1. Mathematical Induction and Combinatorics

(1) Show that for each positive integer n, we have

" n—+—1 o, nn+)@n+1) 5 (nn+1))
d k= Zk 5 , Dk ‘(T)

k=1 k=1

(2) Show that the cube of a positive integer can always be written as the
difference of two squares.

1
(3) Establish a formula for Z o] valid for each positive integer n.

(4) Establish a formula allow_ing one to obtain the sum of the first n positive

even integers.
n

n
(5) Show that the formula Z(—l)jj2 =(-1" Zj holds for each positive
=1 =1
integer n.
(6) Show that a + b is a factor of a?"~! + b2"~! for each integer n > 1.
(7) Show that a2 + b? is a factor of a™ — b*" for each integer n > 1.
(8) Show that for each positive integer n,

n—1

a" =" =(a—b) Y a*b" 'k

k=0

(9) Show that Zj -3 = (n+ 1)! — 1 for each positive integer n.
j=1

(10) Prove, using induction, that (2n)! < 22”(71') for each integer n > 1.

(11) Use induction in order to prove that n® < n! for each integer n > 6.

(12) Let 8 be a real number such that § > —1. Prove, using induction, that
for each integer n > 0, we have (1 +0)" > 1+ né.

(13) Let 6 be a nonnegative real number. Show, using induction, that for each
positive integer n, we have (1 +6)* > 1+ nf + @02.

(14) Show that for each positive integer n, £(n®+ 2n) is an integer.

10" +3-4"2 +5
(15) Show that + + is an integer for each positive integer n.

(16) Show that if n is a positive integer, then

n n
<k>_<k+l> — n=2k+1.

(17) Show that if n is a positive integer, then

() (2:> + (2;) + (2:> P @Z) _ g,
(b) (21"> + (?) ot <2n2f 1) =221,

15
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(18) Prove that for each integer n > 1, we have

n+1\"
I < .
”—( 2 )

(19) Show that each integer n > 7 can be written as a sum containing only the
numbers 3 and 5. For example, 8 =3+5,9=3+3+3,10=5+5.

(20) Assume that amongst n points, n > 2, in a given plane, no three points are
on the same line. Show that the number of possible lines passing through
these points is n(n — 1)/2.

(21) Show that for each integer n > 2,

1 1 1
I+ —+ =4+ —
V2 V3 vn
(22) Prove that for each positive integer k,
B4+33 453+ 4+ (26— 1)% = K2(2k - 1).

-+ > V/n.

(23) We saw in problem 1 that, for each integer n > 1,

nn+1) n? n
+2++n - 5+
+1)@2n+1) n® n? n
124924 ... 2 _ n(n _ n.
+22 4 +n ; Tt3te
2 2 4 3 2
+1) n* n® n
13193 4... 3 _ n*(n _ ‘
+23 4. 4n — =g tT T

Hence, letting Sg(n) = 1¥ + 2% 4 ... + n* and in light of these three
relations, it is normal to conjecture that, for each integer k > 1, Sk(n) is
a polynomial of degree k + 1. In fact, in 1654, Blaise Pascal (1623-1662)
established that indeed it was the case. His proof used induction and the
expansion of the expression (n + 1)¥*! — 1. Provide the details.

(24) Find a formula, valid for each integer n > 2, for

n

1 . !
H(l— ;), and the same for H (1_2'_2)‘

=2 =2
(25) Show that, whatever the value of the integer n > 1, we always have
o
—~ 42 +1 2
(26) Show that if m, n and r are three positive integers such that
1 1 1 41
S=—+-+=-<1, then S<—.
m n T 42

(27) Given a positive integer n, let s(n) be the sum of its digits (in basis 10).
For each pair of positive integers k, ¢ smaller than 10, let Ax(¢) be the
number of ¢-digit positive integers n whose sum of digits is equal to k. In
other words,

Ar(€) = #{n:10°"1 <n < 10%, s(n) = k}.



(28)

(29)

(30)

(31)

(35)

(36)
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Show that
k4f—2 k40—2
Ap(f) = =
() ( e ) ( H )

and conclude in particular that Ag () = A,(k).
Using induction, prove the formulas due to Mariares (1913):

2

1243245240 ...492 = (n—; ), if n is odd;
2

21421062 4...402 = (n;— ), if n is even.

Let S be a set of 10 distinct integers chosen amongst the numbers 1,2, ...,
99. Show that S must contain two disjoint subsets for which the sum of
their respective elements is the same.

Given 51 arbitrary positive integers, show that one can always find two of
them whose difference is 50.

In order to acquire problem solving skills, a student decides to solve at
least one problem per day and at most 11 per week and to do this for a
whole year. Show that there exists a period of consecutive days during
which he will solve exactly 20 problems.

On a rectangular table of dimension 120 inches by 150 inches, we set 14 001
marbles. Show that, no matter how these are arranged, one can place a
cylindrical glass with a diameter of 5 inches over at least 8 marbles.
Choose n points on a circle and join them pairwise by secants. Taking
for granted that no more than two secants can meet at the same point, in
how many regions is the circle thus divided?

Say we have three posts and n disks of different diameters placed on one
of the posts, ordered by increasing diameters, the largest at the bottom
of the post, the smaller at the top. The problem consists in transferring
the tower of disks from the first post to the third post, using if need be
the second post, but in such a way that, with each move, we do not place
the moving disk on a smaller one. Establish the function of n which gives
the minimum number of moves. (This problem is known as the “Tower of
Hanoi Problem”.)

Let {F, : n € N} be the sequence of Fibonacci numbers defined by F; =
1,Fb =1 and F, = F,,_1 + F,,_o for n > 3. Show that each positive
integer can be written as the sum of distinct Fibonacci numbers.

One easily checks that

= 1?2

= —12-22 32442
= —1%242%
—12 - 22 4+ 32,

= 12422

12 - 22 432,

= NS T SO U R
Il
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Hence, we may be tempted to formulate a conjecture, namely that each
positive integer n can be written as

n=e11? + €922 + 332 + e442 +---+ekk2,

for a certain positive integer k (depending on n), where the e; € {—1,1}.
Prove this conjecture.
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2. Divisibility

(37) The mathematician Duro Kurepa defined In = 0!+ 1!+ --- + (n — 1)! for
n > 1 and conjectured that (In,n!) = 2 for all n > 2. This conjecture
has been verified by Ivié¢ and Mijajlovié [20] for n < 108. Using computer
software, write a program showing that this conjecture is true up to n =
1000.

(38) Consider the situation where the positive integer a is divided by the pos-
itive integer b using the euclidian division (see Theorem 7) yielding

(%) a = 652b + 8634.

By how much can we increase both a and b without changing the quotient
q = 6527

(39) Consider the number N = 111...11, here written in basis 2. Write N? in
basis 2.

(40) Show that 39|737 + 1337 4 1937.

(41) Show that, for each integer n > 1, the number 49™ — 2352n — 1 is divisible
by 2304.

(42) Given any integer n > 1, show that the number n* + 2n3 + 2n2 + 2n + 1
is never a perfect square.

(43) Let N be a two digit number. Let M be the number obtained from N by
interchanging its two digits. Show that 9 divides M — N and then find all
the integers N such that |M — N| = 18.

(44) Is it true that 3 never divides n? + 1 for every positive integer n? Explain.

(45) Is it true that 5 never divides n? + 2 for every positive integer n? Explain.
Is the result the same if one replaces the number 5 by the number 77

(46) Given s + 1 integers ag, ai,...,as and a prime number p, show that p
divides the integer

N(n):=ap+an+---+ as_1n°" L+ agn®

if and only if p divides N(r), for an integer r, 0 < r < p — 1. Use this to
find all integers n such that 7 divides 3n? + 6n + 5.
(47) Compute the value of the expression

(10* + 324)(22* + 324)(34* + 324)(46* + 324)(58* + 324)
(44 4 324) (164 + 324) (284 + 324)(40% + 324)(524 + 324)

(48) Show that, in any basis, the number 10101 is composite.

(49) Show that the product of four consecutive integers is necessarily divisible
by 24.

(50) Show that the number

147 + 247 +347 +447 + 547 +647

is a multiple of 7.

(51) Show that the product of any five consecutive positive integers cannot be
a perfect square.

(52) Show that 30|n® — n for each positive integer n.

(53) Show that 6|n(n + 1)(2n + 1) for each positive integer n.
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(54) Given any integer n > 0, show that 64"+! — 63n — 64 is divisible by
3969. More generally, given a € N, show that for each integer n > 0,
(a+1)"*! —an — (a + 1) is divisible by a?.

5) Find all positive integers n such that (n + 1)|(n? + 1).

6) Find all positive integers n such that (n? + 2)|(n® + 206).

7) Identify, if any exist, the positive integers n such that (n3 + 2)|(n® +216).

8) If a and b are positive integers such that b|(a?+ 1), do we necessarily have
that b|(a* + 1)? Explain.

(59) Let n and k be positive integers.

(a) For n > k, show that

(b) For n > k, show that
n+l—-k | (n
(n+1,k) | \k/"
(c) For n > k—1> 1, show that
n+L,k-1)/ n
n+2-k \k-1
(60) For each integer n > 1, let f(n) = 1!+ 2! 4+ .- + nl. Find polynomials
P(z) and Q(z) such that ‘
f(n+2)=Pn)f(n+1)+Q(n)f(n), for each integer n > 1.
(61) Show that, for each positive integer n,
49(23"3 —7n — 8.

(62) Find all positive integers a for which a!? + 1 is divisible by 10.

(63) Is it true that 3|22 — 1 for each positive integer n? Explain.

(64) Show that if an integer is of the form 6k + 5, then it is necessarily of the
form 3k — 1, while the reverse is false.

(65) Can an integer n > 1 be of the form 8k + 7 and also of the form 6¢ + 57

) is an integer.

Explain.

(66) Let My =2+1, My =2-34+1, M3=2-3-5+1, My=2-3-5-7T+1,
Mg=2-3-5-7-11+1,.... Prove none of the numbers M is a perfect
square.

(67) Verify that if an integer is a square and a cube, then it must be of the
form 7k or Tk + 1.

(68) If 2 and y are odd integers, prove that 22 + y? cannot be a perfect square.

(69) Show that, for each positive integer n, we have n?|(n + 1) — 1.

(70) Let k,n € N, n > 2. Show that (n — 1)?|(n* — 1) if and only if (n — 1)|k.
More generally, show the following result: Let a € Z and k,n € N with
n # a; then (n — a)?|(n* — a*) if and only if (n — a)|ka*~1.

(71) Let a,b be integers and let n be a positive integer.

(a) If a — b # 0, show that

a™ —b" _ -1
(—E—:T,a——b>—(n(a,b) ,a—b).
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(b) If a+ b # 0 and if n is odd, show that
a™ 4+ b
a+b

(c) Show that if @ and b are relatively prime with a +b# 0 and if p > 2
is a prime number, then

aP + bP AT 1 ifpf(a+b),
a+b’ | p ifp|(a+b).
(72) Let k and n be positive integers. Show that the only solutions (k,n) of
the equation (n — 1)! = nF — 1 are (1,2), (1,3) and (2, 5).
(73) According to Euclid’s algorithm, assuming that b > a are positive integers,

,a+b) = (n(a,b)" ", a+b).

we have
b = aq +r, 0<r <a,
= 7riq2 + 12, 0<7‘2<7’1,
rL = T2q3+ T3, 0<ry <re,
Tj—2 = Tj-1q; + 75, 0< i <Tj-1,
Ti-1 = Tjqj+1,

where r; = (a, b).
(a) Show that b > 2ry, a > 2ry and for k > 1, 7 > 270,
(b) Deduce that b > 27/2 and therefore that the maximum number of
steps in Euclid’s algorithm is [2(log b/ log 2)].
(74) Show that there exist infinitely many positive integers n such that n|2"+1.
(75) Let a be an integer > 2. Show that for positive integers m and n we have

a” —1ja™ -1 < n|m.

(76) Let N, be an integer formed of n consecutive “1”s. For example, N3 =
111, N7 =1111111. Show that N,|N,, < n|m.

(77) Prove that no member of the sequence 11,111,1111,11111,... is a perfect
square.

(78) What is the smallest positive integer divisible both by 2 and 3 which is
both a perfect square and a sixth power? More generally, what is the
smallest positive integer n divisible by both 2 and 3 which is both an
n—th power and an m-th power, where n,m > 2?7

(79) Three of the four integers, found between 100 and 1000, with the property
of being equal to the sum of the cubes of their digits are 153, 370 and 407.
What is the fourth of these integers?

(80) How many positive integers n < 1000 are not divisible by 2, nor by 3, nor
by 57

(81) Prove the following result obtained in the seventeenth century by Pierre
de Fermat (1601-1665): “Each odd prime number p can be written as the
difference of two perfect squares.”

(82) Prove that the representation mentioned in problem 81 is unique.

(83) Is the result of Fermat stated in problem 81 still true if p is simply an odd
positive integer?

(84) Let n = 999980317. Observing that n = 10% — 3% and factoring this last
expression, conclude that 7|n.
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(85) Show that if an odd integer can be written as the sum of two squares,
then it is of the form 4n + 1.

(86) Let a,b,c € Z be such that abc # 0 and (a,b,c) = 1 and such that
a? + b% = c®. Prove that at least one of the integers a and b is even.

(87) For which integer values of k is the number 10¥ — 1 the cube of an integer?

(88) Show that if the positive integer a divides both 42n 4 37 and 7n + 4 for a
certain integer n, then a =1 or a = 13.

1 1
(89) If a and b are two positive integers and if — + — is an integer, prove that

a = b. Moreover, show that a is then necesasarily equal to 1 or 2.

(90) Let a,b € N such that (a,b) = 4. Find all possible values of (a?,b3).

(91) Let a,b € N and d = (a,b). Find the value of (3a + 5b, 5a + 8b) in terms of
d and more generally that of (ma+nb, ra+ sb) knowing that ms—nr =1,
where m,n,r, s € N.

(92) Let m,n € N. If d/mn where (m,n) = 1, show that d can be written as
d = rs where r|m, s|n and (r,s) = 1.

(93) Let a,b,d be nonzero integers, d odd, such that d|(a + b) and d|(a — b).
Show that d|(a, b).

(94) Given eight positive composite integers < 360, show that at least two of
them have a common factor larger than 1.

(95) If a and b are positive integers such that (a,b) = 1 and ab is a perfect
square, show that a and b are perfect squares.

(96) Can n(n+1) be a perfect square for a certain positive integer n? Explain.

(97) What are the possible values of the expression (n,n+14) as n runs through
the set of positive integers?

(98) Let n > 1 an integer. Which of the following statements are true:

3[(n*=n),  3ln(n+1), 8|Cn+1)2 -1,  6n(n+1)(n+2).

(99) Is it true that if n is an even integer, then 24|n(n + 1)(n + 2)? Explain.
(100) Let n be an integer such that (n,2) = (n,3) = 1. Show that 24|n? + 47.
(101) Let d = (a,b), where a and b are positive integers. Show that there

are exactly d numbers amongst the integers a, 2a, 3a,...,ba which are
divisible by b.

(102) Let a,b be integers such that (a,b) = d, and let z¢,yo be integers such
that axg + byg = d. Show that:
(a) (zo,90) = 1;

(b) zo and yo are not unique.

(103) Let a,m and n be positive integers. If (m,n) = 1, show that (a, mn) =
(a,m)(a,n).

(104) For all n € N, show that (n? +3n +2,6n% + 15n% +3n — 7) = 1.

(105) Let a,b € Z. If (a,b) = 1, show that
(a) (a+b,a—b)=1o0r2; (b)(2a+b,a+2b)=1or3;

(c) (a®>+b%a+b)=1o0r2; (d) (a+b,a®—3ab+b?)=1or5.

(106) Let a,b € Z. If (a,b) = 1, find the possible values of
(a) (a3 +b%a®—b%); (b) (a® —b% a3 —b?).

(107) Let a, b and ¢ be integers. For each of the following statements, say
if it is true or false. If it is true, give a proof; if it is false, provide a
counter-example.

(a) If (a,b) = (a,c), then [a,b] = [a, c].
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(b) If (a,b) = (a,c), then (a2,b?) = (a2, c?).
(¢) If (a,b) = (a,c), then (a,b) = (a,b,c).

(108) Let a,b € Z and let m,n € N. For each of the following statements, say
if it is true or false. If it is true, give a proof; if it is false, provide a
counter-example.

(a) If a™[b™, then alb.
(b) If a™[d™, m > n, then alb.
(c) If a™|b™, m < n, then alb.

(109) Let a,b,c € Z. Show that if (a,b) = 1 and c|a, then (¢, b) = 1.

(110) Let a, b, c € Z. Show that if (a,bc) = 1, then (a,b) = (a,c) = 1.

(111) Let a,b € Z. Show that (a,b) = (a + b, [a,b]). Using this result, find two
positive integers whose sum is 186 and whose LCM is 1440.

(112) Let a,b,c € Z.

(a) Show that (a,bc) = (a, (a,b)c).
(b) Show that (a,bc) = (a, (a,b)(a, c)).

(113) Let a,b,c € Z. Show that if (a,c) = 1, then (ab, ¢) = (b, ¢).

(114) Let a, b, m and n be integers. If (m,n) = 1, show that (ma + nb,mn) =
(a,n)(b,m). Show that this result generalizes the result of problem 103.

(115) Is it possible that (:) is relatively prime with (:), for certain positive
integers r, s, n satisfying 0 < r < s < n /27 Explain.

(116) Find two positive integers for which the difference between their LCM and
their GCD is equal to 143.

(117) Let a, b, ¢ be positive integers. Show that (a, b, ¢) = ((a, b), c) and [a, b, c] =
[la,b], c]. Generalize this result. Use this result to compute (132,102, 36)
and find those integers z, y, z for which 13224102y + 36z = (132,102, 36).

(118) Let n be a positive integer. Evaluate (n,n+1,n+2) and [n,n+1,n+2].

(119) Let a,b,c be positive integers. If (a,b) = (b,¢) = (a,¢) = 1, show that
(a, b, c)]a, b, c] = abe.

(120) Is it true that if a and b are positive integers such that (a,b) = 1, then
(a?, ab,b?) = 1?7 Explain.

(121) Is it true that if a, b and c are positive integers, then [a2, ab, b%] = [a2, b?]?
Explain.

(122) Is it true that if a, b and c are positive integers, then (a,b,c) = ((a,b),
(a,c))? Explain.

(123) Is it true that [a,b,c] - (a,b,¢) = |abc|, V a,b,c € Z\ {0}? Explain.

(124) Let a, b, d, m and n be positive integers such that a|d™ — 1, b|d™ — 1 and
(a,b) = 1. Show that ab|d(™™ — 1.

(125) Show that if a is an integer > 1, then, for each pair of positive integers m
and n,

(@™ —1,a" —1) = a™™ — 1.

What do we obtain for (a™+1,a"+1), for (a™+1,a™—1)? More generally,
given a > 1 and b > 1, what are the values of

(@™ —b"a™ =b"), (a"+b™,a"+0b") and (¢ +b",a" —b")?7

(126) Show that there exist infinitely many pairs of integers {z,y} satisfying
z+y =40 and (z,y) = 5.
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(127) Find all pairs of positive integers {a, b} such that (a,b) = 15 and [a,b] =
90. More generally, if d and m are positive integers, show that there exists
a pair of positive integers {a, b} for which (a,b) = d and [a,b] = m if and
only if djm. Moreover, in this situation, show that the number of such
pairs is 2", where 7 is the number of distinct prime factors of m/d.

(128) Prove that one cannot find integers m and n such that m +n = 101 and
(m,n) =3.

(129) Let a,m,n € N with m # n.
(a) Show that (a®" +1)|(a®” — 1) if m > n.
(b) Show that (a2" +1,a2” +1) = é gz iz z‘é‘zln

(130) Let n be a positive integer. Find the greatest common divisor of the

numbers
2n 2n 2n 2n
() (5)-(5) (")
(131) Given n + 1 distinct positive integers aj,as, ..., an4+1 such that a; < 2n
for i = 1,2,...,n 4+ 1, show that there exists at least one pair {a;, ax}

with j # k such that aj|ak.
(132) Let n > 2. Consider the three n-tuples (a§‘),a;’),...,a£$>), i =1,2,3,
where each ag-z) € {+1,—1} and assume that these three n-tuples satisfy

n
Zagl)ag-k) = 0 for each pair {7,k} such that 1 < i < k < 3. Show that
j=1

4|n.
(133) Let A be the set of natural numbers which, in their decimal representation,
do not have “7” amongst their digits. Prove that

Z%<+oo.

neA
(134) Let uy,us, ... be a strictly increasing sequence of positive integers. De-
noting by [a,b] the lowest common multiple of a and b, show that the
series
¢ 1

rE—— converges.
= [un, un1]



3. PRIME NUMBERS 25

3. Prime Numbers

(135) Using computer software, write a program
(a) to generate all Mersenne primes up to 252% — 1;
(b) to determine the smallest prime number larger than 10190 + 1.

(136) Write a program that generates prime numbers up to a given number N.
One can, of course, use Eratosthenes’ sieve.

(137) Use a computer to find four consecutive integers having the same number
of prime factors (allowing repetitions).

(138) (a) By reversing the digits of the prime number 1009, we obtain the num-
ber 9001, which is also prime. Write a program to find the prime numbers
in [1,10000] verifying this property.

(b) By reversing the digits of the prime number 163, we obtain the number
361, which is a perfect square. Using computer software, write a program
to find all prime numbers in [1,10000] with this property.

(139) Using a computer, find all prime numbers p < 10000 with the property
that p, p+ 2 and p + 6 are all primes.

(140) Let py be the k-th prime number. Show that p; < 2% if k > 2.

(141) If a prime number py > 5 is equally isolated from the prime numbers
appearing before and after it, that is px — px—1 = pr+1 — Px = d, say, show
that d is a multiple of 6. Then, for each of the cases d = 6, 12 and 18, find,
by using a computer, the smallest prime number p; with this property.

(142) Prove that none of the numbers

12321, 1234321, 123454321, 12345654321, 1234567654321,
123456787654321, 12345678987654321

is prime.

(143) For each integer k > 1, let ny be the k-th composite number, so that for
instance n; = 4 and n;g = 18. Use computer software and an appropriate
algorithm in order to establish the value of ng, with £k = 10%, for each
integer « € [2,10].

(144) For each integer k > 1, let ng be the k-th number of the form p, where
p is prime, «a a positive integer, so that for instance ny = 2 and ny¢ = 16.
Use computer software and an appropriate algorithm in order to establish
the value of ng, with k = 10°, for each integer « € [2, 10].

(145) Find all positive integers n < 100 such that 2" + n? is prime. To which
class of congruence modulo 6 do these numbers n belong?

(146) Show that if the integer n > 4 is not an odd multiple of 9, then the
corresponding number a, := 4™ + 2™ + 1 is necessarily composite. Then,
use a computer in order to find all positive integers n < 1000 for which
an is prime.

(147) Consider the sequence (ay) defined by a; = a2 = 1 and, for n > 3, by
an=n!—(n—1!+--- 4 (=1)"2! + (=1)"*11!. Use a computer in order
to find the smallest number n such that a,, is a composite number.

(148) The mathematicians Mindc and Willans have obtained a formula for the
n-th prime number p,, which is more of a theoretical interest than of a
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practical interest:
1/n

271
n
pn=1+ Z - - )
m (7=D!+1 (7=1)!
nh [ (L S [ - 5
where as usual [z] stands for the largest integer < z. Prove this formula.
(149) Develop an idea used by Paul Erdds (1913-1996) to show that, for each

integer n > 1,
H p <4".

p<n
His idea was to write

[Ie=11» 1II »

pSn p<nft Bf<p<n
and to use the fact that each prime number p > (n + 1)/2 appears in the

factorization of the binomial coefficient . Provide the details.

n

(n+1)/2

(150) Show that if four positive integers a, b, ¢, d are such that ab = cd, then the
number a? + b 4 ¢ + d? is necessarily composite.

(151) Show that, for each integer n > 1, the number 4n3 + 6n? + 4n + 1 is
composite.

(152) Show that if p and ¢ are two consecutive odd prime numbers, then p + ¢
is the product of at least three prime numbers (not necessarily distinct).

(153) Does there exist a positive integer n such that n/2 is a perfect square, n/3
a cube and n/5 a fifth power?

(154) Given any integer n > 2, show that n4? — 27 is never a prime number.

(155) Let 6(z) := > ., logp. Prove that Bertrand’s Postulate follows from the
fact that

p<z

az < () < caz,
where ¢; = 0.73 and ¢y = 1.12.
(156) Use Bertrand’s Postulate to show that, for each integer n > 4,

Pi+1 < Dpi1p2 - Pn,

where p,, stands for the n-th prime number.

(157) Certain integers n > 3 can be written in the form n = p + m?, with p
prime and m € N. This is the case for example for the numbers 3, 4, 6, 7,
8,9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21. Let q" be a prime power, where
r is a positive even integer such that 2¢"/2 — 1 is composite. Show that
q" cannot be written as ¢" = p + m?, with p prime and m € N.

(158) Show that if p and 8p — 1 are primes, then 8p + 1 is composite.

(159) Show that all positive integers of the form 3k + 2 have a prime factor of
the same form, that all positive integers of the form 4k + 3 have a prime
factor of the same form, and finally that all positive integers of the form
6k + 5 have a prime factor of the same form.

(160) A positive integer n has a Cantor expansion if it can be written as

n=amm! 4+ an_1(m -1+ -+ a2 + a; 1!,

where the a;’s are integers satisfying 0 < a; < j.
(a) Find the Cantor expansion of 23 and of 57.
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(b) Show that all positive integers n have a Cantor expansion and more-
over that this expansion is unique.
(161) If p > 1 and d > 0 are integers, show that p and p + d are both primes if

and only if
1 (—l)dd!> 1 1
- =+—+-+——
(v )<p p+d p ptd

is an integer.
(162) Find all prime numbers p such that p + 2 and p? + 2p — 8 are primes.
(163) TIs it true that if p and p? + 8 are primes, then p3 + 4 is prime? Explain.
(164) Let n > 2. Show that the integers n and n + 2 form a pair of twin primes
if and only if

4((n—N+1)+n=0 (mod n(n+2)).

(165) Identify each prime number p such that 2P + p? is also prime.

(166) For which prime number(s) p is 17p + 1 a perfect square?

(167) Given two integers a and b such that (a,b) = p, where p is prime, find all
possible values of:

(a) (a%b); (b) (a*b%); (c) (a®b); (d) (a®b?).
168) Given two integers a and b such that (a, p?) = p and (b, p*) = p?, where p
g
is prime, find all possible values of:

(a) (abp°); (b) (a+bp'); (c) (a—bp%); (d) (pa—b,p°).
(169) Given two integers a and b such that (a,p?) = p and (b, p3) = p?, where p
is a prime number, evaluate the expressions (a?b?,p*) and (a? + b, p*).
(170) Let p be a prime number and a, b, ¢ be positive integers. For each of the
following statements, say if is true or false. If it is true, give a proof; if it
is false, provide a counter-example.
(a) If pla and p|(a? + b?), then plb.
(b) If pla™, n > 1, then p|a.
(c) If p|(a® + b?) and p|(b? + c?), then p|(a® — c?).
(d) If p|(a® + b?) and p|(b? + ¢?), then p|(a? + c?).
(171) Let a, b and ¢ be positive integers. Show that abe = (a, b, ¢)[ab, be, ac] =
(ab, be, ac)la, b, c].
(172) Let a, b and c be positive integers and assume that abc = (a, b, ¢)[a, b, c].
Show that this necessarily implies that (a,b) = (b,c) = (a,c) = 1.
L (a,b)(b,c)(a,c)
(173) Let a, b and c¢ be positive integers. Show that (a,b,c) = (ab, be. a)
abc (a, b, c)

(a,b)(b, c)(a, )’
(174) Let a, b and ¢ be positive integers. Show that

and that [a,b,c] =

[a,b,c]? (a,b,c)?

[a,b][b,c][c,a]  (a,b)(b,c)(c,a)’

(175) Find three positive integers a, b, ¢ such that

[a,b,d] - (a,b,c) = Vabe.
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(176) Let #n = [1,2,3,...,n| be the lowest common multiple of the numbers
1,2,...,n. Show that

H p< #n= H pliogn/logp]

p<n p<n

(177) Let p be a prime number and r a positive integer. What are the possible
values of (p,p+r) and of [p,p+ r]?

(178) Let p > 2 be a prime number such that p|8a — b and p|8¢ — d, where
a,b,c,d € Z. Show that p|(ad — bc).

(179) Show that, if {p, p+2} is a pair of twin primes with p > 3, then 12 divides
the sum of these two numbers.

(180) Let n be a positive integer. Show that if n is a composite integer, then
n|(n — 1)! except when n = 4.

(181) For which positive integers n is it true that

n n
1157
j=1

2.
=1
(182) Let m = 3.141592... be Archimede’s constant, and for each positive real
number z, let m3(z) be the function that counts the number of pairs of
twin primes {p, p + 2} such that p < z. Show that

my(z) =2+ Y sin <g(n+2) [n"—;?]) -sin (gn [(";2)!D :

7<n<lz

where [y] stands for the largest integer < y.

(183) Given an integer n > 2, show, without using Bertrand’s Postulate, that
there exists a prime number p such that n < p < n!.

(184) In 1556, Niccdlo Tartaglia (1500-1557) claimed that the sums

14244, 1+2+4+8, 1+2+4+8+16, ...

stood successively for a prime number and a composite number. Was he
right?

(185) Show that if a™ — 1 is prime for certain integers a > 1 and n > 1, then
a =2 and n is prime.

REMARK: The integers of the form 2P — 1, where p is prime, are called
Mersenne numbers. We denote them by M, in memory of Marin Mersenne
(1588-1648), who had stated that M, is prime for

p=23,57,13,17,19,31, 67, 127, 257

and composite for all the other primes p < 257. This assertion of Mersenne
can be found in the preface of his book Cogita Physico-mathematica, pub-
lished in Paris in 1644. Since then, we have found a few errors in the com-
putations of Mersenne: indeed M, is not prime for p = 67 and p = 257,
while M, is prime for p = 61, p = 89 and p = 109. One can find in the
appendiz C of the book of J.M. De Koninck and A. Mercier [8] the list
of Mersenne primes M, corresponding to the prime numbers p satisfying
2 < p <44497. Note on the other hand that it has recently been discovered
that 232582657 _ 1 js prime (in September 2006), which brings to 44 the
total number of known Mersenne primes. It is also known that the primes
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M, are closely related to the PERFECT NUMBERS, in the sense that, as
was shown by Leonhard Euler (1707-1783), n is an even perfect number
if and only if n = 2P~1(2P — 1), where 2P — 1 is a Mersenne prime.

(186) Show that if there exists a positive integer n and an integer a > 2 such
that a™ 4+ 1 is prime, then a is even and n = 2" for a certain positive
integer r.

REMARK: The prime numbers of the form 22" 4 1, k=0,1,2,..., are
called “Fermat primes”. The reason is that Pierre de Fermat claimed in
1640 (although saying he could not prove it) that all the numbers of the

form 22" + 1 are prime. One hundred years later, Euler proved that
92° 41 = 4294967297 = 641 - 6700417.

As of today, we still do not know if, besides the cases k = 0,1,2,3,4,
primes of the form 22" 41 exist. Nevertheless, it is known that 22" 4
1 is composite for 5 < k < 32; see H.C. Williams [41] and the site
www.prothsearch.net/fermat.html.

(187) Show that the equation (2% —1)(2¥ —1) = 22" +1 is impossible for positive
integers z,y and 2. (This implies in particular that a Fermat number, that
is a number of the form 22° + 1, cannot be the product of two Mersenne
numbers.)

(188) Prove by induction that, for each integer n > 1,

Ry Fy - Fy g = F — 2,

where F; =22 +1,i=0,1,2,... .

(189) Use the result of problem 188 in order to prove that if m and n are distinct
positive integers, then (F,,,, F,,) = 1.

(190) A positive integer n is said to be pseudoprime in basis a > 2 if it is
composite and if ! = 1 (mod n). Find the smallest number which is
pseudoprime in each of the bases 2, 3, 5 and 7.

(191) Use Problem 189 to prove that there exist infinitely many primes.

(192) Consider the numbers f, = 23" + 1, n = 1,2,..., and show they are all
composite and in particular that, for each positive integer n,

(8) 37U fui  (B) Plfn = plfust.

(193) Show that there exist infinitely many prime numbers p such that the
numbers p — 2 and p + 2 are both composite.

(194) Show that 641 divides F5 = 22° + 1 without doing the explicit division.

(195) Use an induction argument in order to prove that each Fermat number
F, = 22" 4+ 1, where n > 2, ends with the digit 7.

(196) Let n be a positive integer and consider the set F = {1,2,...,n}. Let
2% be the largest power of 2 which belongs to E. Show that for all m €
E\ {2*}, we have 2* fm. Using this result, show that Z;l:l 1/j is not an
integer if n > 1.

(197) Show that, for each positive integer n, one can find a prime number p < 50
such that p|(25™ — 1).

(198) Show that the integers defined by the sequence of numbers

My =pip2---pr+1 (k=1,2,...),
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where p; stands for the j-th prime number, are prime numbers for 1 <
k < 5 and composite numbers for k = 6,7. What about Mg, My and
Mio?

(199) Use the proof of Euclid’s Theorem on the infinitude of primes to show
that, if we denote by p, the r-th prime number, then p, < 227" for each
reN.

(200) In Problem 199, we obtained an upper bound for p,., the r-th prime num-
ber, namely p, < 227" Use this inequality to obtain a lower bound for
m(z), the number of prime numbers < z. More precisely, show that, for
xz >3, m(z) > loglog .

(201) Show that there exist infinitely many prime numbers of the form 4n + 3.

(202) Show that there exist infinitely many prime numbers of the form 6n + 5.

(203) Let f: N — R be the function defined by

f@)=arz" +a,—12" '+ + a1z + ag,

where a, # 0 and where each a;, 0 <14 < 7, is an integer. Show that, by
an appropriate choice of a;, 0 < i < r, the set {f(n) : n € N} contains at
least r prime numbers.

(204) Consider the positive integers which can be written as an alternating
sequence of 0’s and 1’s. The number 101010101 is such a number and
observe that 101010101 = 41-271-9091. Besides 101, do there exist other
prime numbers of this form?

(205) Find all prime numbers of the form 22" + 5, where n € N. Would the
question be more difficult if one replaces the number 5 by another number
of the form 3k + 27 Explain.

(206) The largest gaps between two consecutive prime numbers p, < p,.41 < 100
occur successively when

Pr41 —Pr =9 —3 =2,
Pri1—py=11—-T=4,
Pr+1 —Pr =29 — 23 =6,
Dr+1 — pr =97 —89 =8.
Is it true that these constantly increasing gaps always occur by jumps of

length 2?7 In other words, does the first gap of length 2k always occur
before the first gap of length 2k + 27

1
(207) Show that Z Z p < 1, where the inner sum runs over all the prime
a=2 p
numbers p.
(208) Let

£(z) = 7(@) + 57(?) + 3r(@?) + gr@ )+

be a series which is in fact a finite sum for each real number z > 1 since
m(x1/™) = 0 as soon as n > logz/log 2. Show that

rlz) = 3 MW a1
n=1
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REMARK: It is possible to show that f(z) is a better approximation of
xz

, dt .
n(z) than Li(z) .—/2 Togi (see H. Riesel [31]).

Let n > 2 be an integer. Show that the interval [n,2n] contains at least
one perfect square.
If n is a positive integer such that 3n? —3n + 1 is composite, show that n?
cannot be written as n® = p+m?3, with p prime and m a positive integer.
It is conjectured that there exist infinitely many prime numbers p of the
form p = n? 4 1. Identify the primes p < 10000 of this particular form.
Why is the last digit of such a prime number p always 1 or 77 Is there
any reasonable explanation for the fact that the digit 7 appears essentially
twice as often?
Show that, for each integer n > 2,
()" < T p7r.
p<n
For each integer N > 1, let Sy = {n? +2:6 < n < 6N}. Show that no
more than % of the elements of Sy are primes.
Let p be a prime number and consider the integer N =2-3-5---p. Show
that the (p — 1) consecutive integers
N+2,N+3,N+4,....N+p

are composite.
Let n > 1 be an integer with at least 3 digits. Show that

(a) 2|n if and only if the last digit of n is divisible by 2;

(b) 2%|n if and only if the number formed with the last two digits of n is

divisible by 4;
(c) 23|n if and only if the number formed with the last three digits of n
is divisible by 8.

Can one generalize?

For each integer n > 2, let
Pn)= ] (1 - 1)
pln P
p>logn

Show that nlirrgo P(n)=1.
Prove that there exists an interval of the form [n?, (n + 1)?] containing at
least 1000 prime numbers.
Use the Prime Number Theorem (see Theorem 17) in order to prove that
the set of numbers of the form p/q (where p and q are primes) is dense in
the set of positive real numbers.

Show that the sum of the reciprocals of a finite number of distinct prime
numbers cannot be an integer.
Use the fact that there exists a positive constant ¢ such that if > 100,
(1) Z L loglogz + ¢+ R(z) with |R(z)| < !

log x

p<z
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and moreover that, for x > 2,

(2) 7(z) :zZl<g ad

p<z

in order to prove that if P(n) stands for the largest prime factor of n, then

1 9 1
Use this result to show that more than % of the integers have their largest
prime factor larger than their square root, or in other words that the
density of the set of integers n such that P(n) > y/n is larger than 2.
(221) Prove the following formula (due to Adrien-Marie Legendre (1752-1833)):

r(z) = 7(Vz) + um) 2] -1,
nlzg;pr "
where r = (/).
(222) Consider the following two conjectures:
A. (Goldbach Conjecture) Each even integer > 4 can be written as the
sum of two primes.
B. Each integer > 5 can be written as the sum of three prime numbers.
Show that these two conjectures are equivalent.
(223) Show that w(m), the number of prime numbers not exceeding the positive
integer m, satisfies the relation

=3 [<j—1.>!+1 ) [(jfl)!}} |

j=2 J J

where [y] stands for the largest integer < y.
(224) Given a sequence of natural numbers A, let A(n) = #{m <n:m € A},
and let us denote respectively by

d A = liminf Aln) and d.A = limsup Aln)

n—oo n n—oo n
the asymptotic lower density and asymptotic upper density of the sequence
A. On the other hand, if both these densities are equal, we say that the

sequence A has density d A = dA = dA. Prove that:
(a) the density of the sequence made up of all the multiples of a natural

number a is equal to 1/a;

(b) the density of the sequence made up of all the multiples of a natural

number a which are not divisible by the natural number aq is equal
1 1

0= — — .
a [a,ag]’

(c) the density of the sequence made up of all natural numbers which

are not divisible by any of the prime numbers ¢, g, - .., ¢, is equal

. 1

(225) Let A be the set of natural numbers n such that 22¢ < n < 22+1 for a
certain integer k > 0, so that

A={1,4,56,7,16,17,...,31,64,65,...,127,256,257,...}.
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Show that
dA#dA.

(226) We say that a sequence of natural numbers A is primitive if no element of
A divides another one. Examples of such sequences are: the sequence of
prime numbers, the sequence of natural numbers having exactly k prime
factors (k fixed), and finally the sequence of integers n belonging to the
interval |k, 2k] (k fixed). Show that if A is a primitive sequence, then
dA< .

(227) Let A be a primitive sequence (see Problem 226). Show that

>

acA
(228) Let E = {a+by/=5 | a,b € Z}.
(a) Show that the sum and the product of elements of E are in E.
(b) Define the norm of an element z € E by | z| = |la+bv/=5|| = a*+5b2.
We say that an element p € E is prime if it is impossible to write
p = ming, with ny,ng € E, |n1]| > 1, ||n2|| > 1; we say that it is
composite if it is not prime. Show that, in F, 3 is a prime number
and 29 is a composite number.
(c) Show that the factorization of 9 in E' is not unique.
(229) Let A be a set of natural numbers and let A(z) = #{n < z : n € A}.
Show that, for all x > 1,
Z Z A(n) A(JU)
— n(n+1) [x] +1
n€A

< Ho00.
aloga
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4. Representations of Numbers

A number n = dyds - - - d,., where dy,ds, . .., d, are the digits of n, is called
a palindrome if it remains unchanged when its digits are reversed, that
isif n = dyd,_1---d;. Hence the numbers 36763 and 437734 are both
palindromes. Show that each palindrome having an even number of digits
is divisible by 11.

The smallest number n > 2 which is equal to the sum of the factorials of
its digits in basis 15 is 1441 (here, 1441 = [6,6, 1];5 = 6! + 6! + 1!). How
can one find another such number n > 2 without using a computer?

Let r be a positive integer and let n be a number which can be written as
a sum of r distinct factorials, that is for which there exist positive integers
dy < dy < ... < d, such that

Prove that such a representation is unique.

Let c be a positive odd integer. Show that the equation z? — 3% = 8¢ — 1

has no solutions in positive integers x and y, and use this to show that

there exist infinitely many positive integers which are not of the form

x? — o3

Show that the last four digits of the decimal representation of 5™, for

n=4,5,6,..., form a periodic sequence. What is this period?

Show that there exist infinitely many natural numbers which cannot be

written as the sum of one, two or three cubes.

Show that every integer can be written as the sum of five cubes.

Given a positive integer n, let s(n) be the sum of its digits, so that for

example s(12) = 3 and s(924) = 15. Find all pairs of integers m < n such

that s(m)? = n and s(n)? = m.

The Egyptians used to express each fraction (except %) as a sum of unitary

fractions (that is, fractions of the form 1/n, where n is a positive integer).

(a) Prove the result etablished by James Joseph Sylvester (1814-1897) to

the effect that each fraction n/m, n < m, (n,m) = 1, can be written
as a sum of unitary fractions.

(b) Show that such a representation is not necessarily unique.

(c) Show that if n is of the form n = 4m + 3, then 4/n is the sum of

three unitary distinct fractions.

A positive integer is said to be complete if its square uses each of the 10

digits exactly once. Use a computer to find the smallest complete number

and then show that a complete number cannot be a prime number.

Show that 2 is the only prime number p which can be written as p = 3413

with z,y € N.

Prove that a prime number p can be written as the difference of two

positive cubes if and only if p = 3k(k+ 1) + 1 for a certain positive integer

k. Find the ten smallest prime numbers of this form.

Prove that an integer n can be written as the difference of two squares if

and only if n is not of the form 4k + 2.
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We say that an integer n > 1 is automorphic if the number n? ends with
the same digits as n. Hence 5, 25 and 625 are automorphic numbers.
Show that there exist infinitely many automorphic numbers.

Show that for each number n = dids - --d, > 9, where dy,do, ..., d, stand
for the digits of n in basis 10, we have

n—dy-dy---d, > 107",

Find the largest positive integer which is equal to the sum of the fifth
powers of its digits added to the product of its digits.
Show how one can construct the only sequence (ax) of positive integers
having the following properties:
(i) ax is made of k digits;
(ii) 2% divides ax;
(iii) aj contains only the digits 1 and 2.
Generate the first 14 terms of this sequence.

For each positive integer n, let s(n) be the sum of its digits. Given an
integer k > 2 which is not a multiple of 3, let p(k) be the smallest prime
number p such that s(p) = k, if such a prime number p exists. In the
particular case k = 2, it seems that there are only three prime numbers p
such that s(p) = 2, namely 2, 11 and 101, and we have in particular that
p(2) = 2. We also have that p(4) = 13, p(5) = 5, p(7) = 7, p(8) = 17,
p(10) = 19, p(11) = 29, and so on; the function p(k) increases quite fast;
for instance, p(80) = 998999999. For each integer k£ > 2 which is not a
multiple of 3, the candidates p such that s(p) = k appear to be numerous,
and in fact there seems to be infinitely many of them. It therefore appears
that the function p(k) is well defined. However, it is not at all obvious that
given a particular integer k£ > 2, one can always find at least one prime
number p such that s(p) = k. Nevertheless, prove that if p(k) exists, then

p(k) > (a+1)10° — 1, where b= [k/9] and a = k — 9b.

Given a positive integer m, set
3 3

n® —m
Pm) = [T 503
n#Em
where the infinite product runs over all positive integers n # m. Show
that
n+m

n3+m3'

2 m
— m+1 2
P(m) = (=1 2 (m)? ]|
Find all positive integers n which can be written as the sum of the facto-
rials of their digits.
Find the only positive integer n = d1ds - - - dax, where dq, ds, . . ., dox stand
for the digits (an even number of them) of n, such that

n e dle il
More precisely, proceed in two steps. First, show that there exists only
a finite number of positive integers with this property. Afterwards, use a

computer to find this number, thereby elaborating a process which allows
one to minimize the number of candidates.
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Show that there exist exactly six positive integers n with the property
that the sum of their digits added to the sum of the cubes of their digits
is equal to the number n itself, that is such that

n=dydy--dr=dy+dy+-+d.+d}+ds+--+d>,

where di,ds, .. .,d, stand for the digits of n.

Given a positive integer k, let g(k) be the smallest number r which has
the property that each positive integer can be written as x¥ +a5 +- - - +zk,
where the z;’s are nonnegative integers. In 1770, Joseph-Louis Lagrange
(1736-1813) showed that g(2) = 4. The problem of calculating the value
of g(k) is known as the Waring problem. The mere fact that the function
g(k) is well defined is not at all obvious; as a matter of fact, it is only in
1909 that David Hilbert (1862-1943) finally showed that g(k) exists for
each positive integer k. It is conjectured that

(;)k] (k> 1)

Around 1772, Johannes Albert Euler (the son of the famous Leonhard
Euler) proved that this last quantity is actually a lower bound for g(k).
Reconstruct this proof by considering the integer n = ¢2* — 1, where the
number q is defined implicitly by

3k = g2k 41 (1<r<2F).

g(k)=2k—2+

Find the only positive integer whose square and cube, taken together, use
all the digits from 0 to 9 exactly once.

Find the only positive integer whose square and cube, taken together, use
all the digits from 0 to 9 exactly twice.

Show that there are only a finite number of positive integers whose square
and cube, taken together, uses all the digits from 0 to 9 exactly three
times, and find these numbers.

A positive integer n having 2r digits, 7 > 1, is called a vampire number
if it can be written as the product of two positive integers, each of r
digits, the union of their digits giving all the digits appearing in n. Hence
1260 = 21 x 60 is the smallest vampire number. Use a computer to find
the seven vampire numbers made up of four digits.

Given a positive integer n = dids - - - d,, where dj,da, ..., d, stand for the
digits of n, we let g3(n) = d3 +d3 + --- + d. Find all positive integers n
such that g3(g3(n)) = n.

Given a positive integer n = d1ds - - - d,, where d;,da, ..., d, stand for the
digits of n, let f(n) = di! + d3! + - -+ + d,!. For each positive integer k,
let fx stand for the k-th iteration of the function f, that is fi1(n) = f(n),
fa(n) = f(f(n)), and so on. Using a computer, show that, for every
positive integer n, the iteration

(%) fi(n), f2(n), f3(n), ..., fe(n),...

always ends up in an infinite loop. If n = 1, this loop is 1, 1, 1, ...;
establish that if n > 1, then the iteration (*) eventually enters one of the
following six loops:
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2,22 ...
145, 145, 145, . ..
169, 363601, 1454, 169, ...
871, 45361, 871, ...
872, 45362, 872, ...
40585, 40585, 40585, ...
(259) Let n,k be arbitrary integers larger than 1. Show that there exists a
polynomial p(x) of degree k with integer coefficients and a positive integer

m such that n = p(m).
(260) If the number 111...1, made of k times the digit 1, is prime, show that

k is prime.
(261) Prove that it is impossible to find three prime numbers ¢; < g2 < g3 such
that
(1) 019293 = g7 + 45 + G-
What if, instead of (1), we have
(2) 14203 = 43 + 5 + 437

(262) Find all positive integers n such that £ = 0.7 .
(263) Use a computer to find the eight positive composite integers n < 108 such

that
(%) n=4r'g" g =gt t gt g
for a certain positive integer a, where q¢; < g2 < ... < g, are the prime

factors of n.

(264) Show that o(n) is a power of 2 if and only if n is a product of Mersenne
primes.

(265) What are the positive integers which can be represented in the form

(§>+kn, k>1,n>17?
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5. Congruences

) For which positive integers n is the number 3™ + 1 a multiple of 107

) Find the smallest positive residue modulo 7 of 1! + 2! 4 -- - + 50!
111

(

(

(268) What is the remainder of the division of Z il by 127

=1
(269) Show that for each positive integer n, 10-32™ + 1 is a composite number.
(270) Is it true that 36 divides n® + n? + 4 for infinitely many positive integers
n? Explain.

(271) In a letter sent to Christian Huygens (1629-1695) in 1659, Fermat wrote
that using his method of infinite descent, he was successful in showing
that no integer of the form 3k — 1 can be written as 2 + 3y? (with z and
y integers). Is it possible to prove this result in a very simple manner?
Explain.

(272) Let m and n be positive integers such that p™||n for a certain prime

number p. Show that

[555 ]

e T (3] o)y e

(273) Let n be a positive integer. Show that the last digit of n'3 is the same as
the last digit of n.

(274) Find the smallest positive integer n such that {/n/7 and %/n/11 are both
integers.

(275) Show that there exists an arbitrarily long sequence of consecutive integers,
each divisible by a perfect square.

(276) Let a and b be integers and let m and n be positive integers. Show that
the system of congruences

x=a (modm),
x=b (modn)

has solutions if and only if (m,n)|(a — b).
(277) Let p be a prime number. Show that if k is an integer, 1 < k < p, then

Z) =0 (mod p).
(278) (a) Let xq,x2,...,x, be integers. Show that
(1 +z2+-+z)P =z +25+---+ 22 (mod p).

(b) Show that if a and b are integers such that a? = o (mod p), then
a? = b? (mod p?).
(279) Let p be an odd prime number and let k be an integer such that 1 < k < p.

Show that
(3 1) =0 mod )

(280) Let p be a prime number and let 7 be an integer such that 1 < r < p. If
(=1)"r!'=1 (mod p), show that

(p—r—1)!=-1 (mod p).
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Use this result to show that 259! = —1 (mod 269) and 463! = —1 (mod 479).

(281) Let a > 3 and 3 > 6 be two integers. Show that the equation 27 —1 = 3p®
has no solutions for p prime.

(282) Let p be a prime number and let n = 2p + 1. Show that if n is not a
multiple of 3 and if 2°~! = 1 (mod n), then n is prime.

(283) Let p be a prime number and k a positive integer. Show that

(%) a=b (mod pk) = aP = b (mod Pk+1)~

Then, prove that if p > 2, p fa and p*|la — b, then p**+1||a? — bP.

(284) If p is a prime number, can the equation p® + 1 = 2” have solutions with
integers § > 2 and v > 2s7

(285) Show that the equation 1 + n + n? = m?, where m and n are positive
integers, is impossible.

(286) Show that the only solution of the equation 1 + p + p? + p3 + p* = ¢2,
where p and ¢ are primes, is {p, ¢} = {3, 11}.

(287) Let x1, 9, 23,74 and x5 be integers such that

3+ 23+ a2l +ai+ad=0.

Show that necessarily one of the z;’s is a multiple of 7.
(288) Show that 27 + 37 is not a power (> 1) of an integer if p is prime.
(289) Show that for each positive integer n,
1"+ 2"+ 3" +4" + 5™ + 6
is divisible by 7 if and only if n is not divisible by 6.

(290) Is it true that if n is a positive odd integer whose last digit in decimal
representation is different from 5, then the last two digits of the decimal
representation of n4%? are 0 and 1? Explain.

(291) What are the possible values of the last digit of 4™ for each m € N?

(292) Show that the difference of two consecutive cubes is never divisible by 3,
nor by 5.

(293) Is it true that 27|(25"*! + 57%2) for each integer n > 0?7 Explain.

(294) Show that for each positive integer k, the number (132)2k+1 4 (982)2k+1
is divisible by 337.

(295) Find the last two digits of the decimal representation of 191°"".

(296) If a and b are positive integers such that (ab, 70) = 1, show that a'?—b'? =

0 (mod 280).

297) Show that for each integer n > 2, n!3 — n is divisible by 2730.

298) Find the smallest positive integer which divided by 12, by 17, by 45 or by
70 gives in each case a remainder of 4.

(299) If n is an arbitrary positive integer, is the number

o~ o~

3n'? +4n't + 17 +3n° + 3n
divisible by 77
2
(300) Let p be a prime number; show that <;’) =2 (mod p).

(301) Show that a 3-digit positive integer whose decimal representation is of
the form “abc” (for three digits a, b and ¢) is divisible by 7 if and only if
2a + 3b + c is divisible by 7.
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(302) Show that a 6-digit positive integer whose decimal representation is of the
form “abcabc” (for three digits a, b and c) is necessarily divisible by 13.

(303) Show that 561|256 — 2 and that 561|361 — 3.

(304) Given a positive integer n, show that

12 .4 23
35" 35"
is an integer.

(305) Does there exist a rational number r such that for each positive integer n
relatively prime with 481,

36
wi”
is a positive integer?

(306) Let p be an odd prime number, p # 5. Show that p divides infinitely many
integers amongst 1,11,111,1111,....

(307) According to Fermat’s Little Theorem, if n is an odd prime number and if
a is a positive integer such that (a,n) = 1, then a"~! =1 (mod n). Show
that the reverse of this result is false.

(308) Let p > 3 be a prime number. Show that ab? — ba? =0 (mod 6p) for any
integers a and b.

(309) If n is a positive integer, is it true that

1+42434+---4+(n—1)=0 (mod n)?
Explain.
(310) For which positive integers n do we have
124224324+ +(n—1)?=0 (mod n)?
(311) Is it true that if n is a positive integer divisible by 4, then
P+224384+...4(n-1*=0 (mod n)?
(312) Prove that for each positive integer n, we have
5"=1+4n (mod 16) and 5"=1+4n+8n(n—1) (mod 64).
(313) Show that for each positive integer k > 3,
527°#£1 (mod2¥) while 52 =1 (mod 2¥).
More generally, show that for &k > 2 and a given odd integer a, we have
=1 (mod 2F).

(314) Show that

is an integer for all n € N. More generally, show that if p and g are prime
numbers, then

n?  nd —_p—

nh ont (pg—p—aqn

p q Pq
is an integer for all n € N.

(315) Find the solution of the congruence x24 + 7z = 2 (mod 13).
(316) Because of Wilson’s Theorem, the numbers 2,3,4...,15 can be arranged
in seven pairs {z, y} such that zy =1 (mod 17). Find these seven pairs.
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(318)

(319)
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(325)

(326)

(327)
(328)

(329)
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Let m = mymg---m,, where the m;’s are integers > 1 and pairwise
coprime. Show that

mf(m)/¢(m1) + m;’(’”’/“m) 4+ gm0 = 1 (mod m).
Let p be a prime number and k an integer, 0 < k < p. Show that
(k—=D(p—k)!'=(-1F (mod p).
If p and q are distinct prime numbers, is it true that we always have
pT 4¢P =1 (mod pq)?

More generally, if m and n are positive integers such that (m,n) = 1, is
it true that

n®™ £ m®™ =1 (mod mn)?
Show that for each positive integer n,
3"*2 =8n+9 (mod 64).

Let p > 5 be a prime number. Find the value of (p!, (p — 2)! — 1).
Show that
56614 _ 19857 =1 (mod 7).

Divisibility tests. Let N be a positive integer whose decimal representation
is N = ap,10" + -+ + a210% + 2110 + ag, where 0 < a, < 9 and for
k=0,...,n—1,0 <ax £9. Show that

(a) N is divisible by 3 ap + ap—1+ -+ a3 +a9 =0 (mod 3).

(b) N is divisible by 4 10a; + ag =0 (mod 4).

(¢) N is divisible by 6 d(an + -+ a1 + ag) = 3ap (mod 6).
(d) N is divisible by 7 (100a; + 10a; + ag) — (100a; + 10a4 + a3)
+ (100ag + 10a7 + ag) — - -- =0 (mod 7).

(e) N is divisible by 8 100as + 10a; + ap =0 (mod 8).

(f) N is divisible by 9 Gn+ap—1+ - +ap =0 (mod 9).

(g) N is divisible by 11 < a, —an_1+ -+ (—1)"ap =0 (mod 11).
Assume that 168 divides the integer whose decimal representation is
“770ab45¢”. Find the digits a, b and c.

Let a be an integer > 2 and let m € N. If (a,m) = (a — 1,m) = 1, show
that

11ty

l+a+a?+---+a®™1=0 (modm).
Let p be a prime number. Show that for each a € N, we have

a®?V'*l = (mod p).

Show that if p is a prime number, then 1771 42P~1 ... 4 (p—1)P~L = -1
(mod p).
Show that if p is an odd prime number, then 1P + 2P + ... 4+ (p— 1)P =0
(mod p).
Let p be an odd prime number. Show that

p—1

> (k—1Dp—k)kP~' =0 (mod p).

k=1
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(330) Letting p be a prime number of the form 4n + 1, show that (2n)))? = -1
(mod p). More generally, if p is a prime number and if m+n =p -1,
m >0, n > 0, show that

mln! = (=1)™"  (mod p).

(A similar result was obtained in Problem 318.) Use this last formula to

prove that
p-1\,|’ (p+1)/2
5 1y =(-1)V” (mod p).

(331) Show that an integer n > 2 is prime if and only if n divides the number
2(n - 3)!1+ 1.

(332) Show that if p is a prime number and a an arbitrary integer, then p divides
the expression a? + a(p — 1)!.

(333) Show that if 7 = 3.141592... stands for Archimede’s constant and 7 (z)
stands for the number of prime numbers p < z, then

mz)= Y [COSQ (#L%)} ,

2<n<z

where [y] stands for the largest integer smaller or equal to y.
(334) Let my,my € N be such that (my,m2) = 1. If a, r and s are positive
integers such that a” =1 (mod m;) and ¢® =1 (mod my). Show that

al =1 (mod myms).
(335) Let m be a positive integer. Show that for each a € N,
o™ =a™"*"™  (mod m).

(336) Let m be a positive odd integer. Show that the sum of the elements of a
complete residue system modulo m is congruent to 0 (mod m).

(337) Let a,b € Z, m € N. If E is a complete residue system modulo m and if
(a,m) =1, show that

E'={az+b|z e E}

is also a complete residue system modulo m.

(338) Is it possible to construct a reduced residue system modulo 7 made up
entirely of multiples of 67 Explain.

(339) Let m > 2 be an integer. Show that the sum of the elements of a reduced
residue system modulo m is congruent to 0 (mod m).

(340) If {ry,72,...,7p—1} is a reduced residue system modulo a prime number
p, show that

p—1
H r; =—1 (mod p).
j=1

(341) Let a,b € Z, m € N. Using a counter-example, show that if E is a reduced
residue system modulo m and if (a,m) = 1, then the set {az +b |z € E}
is not necessarily a reduced residue system modulo m.

(342) Find all integers z,y and 2z with 2 < z < y < z such that

zy=1 (mod z), zz=1 (mody), yz=1 (mod z).
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(343) Let n and k be positive integers. Show that there exists a sequence of
n consecutive composite integers such that each is divisible by at least &
distinct prime numbers. Using this result, find the smallest sequence of
four consecutive integers divisible by 3, 5, 7 and 11 respectively.

(344) Find all positive integers which give the remainder 1, 2 and 3 when divided
respectively by 3, 4 and 5.

(345) Find the smallest integer a > 2 such that

2la, 3la+1, 4la+2, 5la+3, 6la+4.

(346) Find the cycle and the period of 1/3, 1/32,1/3%,1/34,1/7,1/72,1/73. Let
p be an arbitrary prime number for which the period of 1/p is m. Using
these computations, what should one conjecture regarding the periods of
1/p?, 1/p3,...,1/p"?

(347) The decimal expansion of 2/3 = 0.666 . .. consists in a repetition of 6 =
2+ 3. The same phenomenon occurs with the decimal expansion of 1/3 =
0.333.... Find all positive rational numbers a/b with (a,b) = 1, whose
decimal expansion is formed by an infinite repetition of the product of its
numerator and of its denominator.

(348) Show that the period of a fraction m/n with m < n, (m,n) =1, (n,10) =
1 is the smallest positive integer A such that 10" =1 (mod n).

(349) If m/n has the cycle ajas - - - ap, show that m|ajas - - ap.

(350) If m/n = 0.ajaz- .- a,, show that

m _ ayaz...a,r

n  100-1"

where the numerator is the number made up of the r digits a1, as,...,a,

(and not of their product).
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6. Primality Tests and Factorization Algorithms

(351) Let d > 1 be a proper divisor of the positive integer n. Prove that 2"~1 +
29-1 _ 1 is a composite number.

(352) Prove that if a Mersenne number, that is a number of the form 29—1 where
g is prime, is not squarefree, then it must be divisible by a Wieferich prime,
that is a prime number p such that 2°~! = 1 (mod p?).

(353) Find the three smallest prime factors of the number n = 5% — 7112,

(354) Let m > 4 be an even integer and let @ > 2 be an integer. Show that
ma

- + 5~ 1 is a composite number.

(355) Show that the sequence 22" + 3, n = 1,2,..., contains infinitely many
composite numbers.

(356) Use Problem 354 to prove that 22° + 15 is a composite number.

(357) Is it true that 22" + 15 is a prime number for each integer n > 0? If it is
true, prove it. If it is false, provide a counter-example.

(358) By a close examination of the representation of the number n given in
Problem 84, obtain that 973|n and therefore that 139 is a prime factor of
n.

(359) Knowing that the number n = 999951 has a prime factor p such that
300 < p < 400 and observing that n + 49 = 106, find this number p.

(360) Show that 127 is a prime divisor of 22! — 1.

(361) Find four prime factors of 22° — 1.

(362) Prove that at least one third of the integers of the form nl0™ + 1 are
composite.

(363) Use Problem 75 to show that 3, 7 and 31 are prime factors of 23° — 1 and
that 31 and 127 are prime factors of 235 — 1.

(364) Let n = 239 — 1. Show that 11|n without computing explicitly the value
of n.

(365) Use Problem 75 to show that 2, 5, 7 and 13 are prime factors of 3'2 — 1
and that 2, 5, 7, 13, 41 and 73 are prime factors of 324 — 1.

(366) Given two integers a and m larger than 1, show that, if m is odd, then
a+ 1 is a divisor of a™ + 1. Use this result to obtain the factorization of
1001.

(367) Generalize the result of Problem 366 to obtain that if a and m are two
integers larger than 1 and if d > 1 is an odd divisor of m, then ™/ 41 is
a divisor of a™ +1. Use this result to show that 101 is a factor of 1000001.

(368) Show that 7, 11 and 13 are factors of 1015 4 1.

(369) Show that n* + 4 is a composite number for each integer n > 2. More
generally show that if a is a positive integer such that 2a is a perfect
square, then n* + a? is a composite number provided n > v/2a.

(370) Show that there exist infinitely many composite numbers of the form
k10% + 1.

(371) Show that if the number k + 2 is prime, then it is a prime divisor of the
number 2k* + 1.

(372) Find three factors of 258 + 1.

(373) Let M, = 27 — 1, where p is an odd prime number. Show that all the
factors of M, are of the form 2kp + 1, where k € N.
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The primality test of Lucas-Lehmer may be read as follows: “Let p be an
odd prime number. The Mersenne number M, = 2P — 1 is prime if and
only if Mp|Sp_1, where S; = 4 and Sp41 = S2 — 2 (mod M), n > 1.
Use this test (and a computer) to prove that Mg, is prime.

Factor the number n = 10*® — 1. A computer may prove handy to obtain
certain factors of n smaller than 10°.

In 1960, Waclaw Sierpinski (1882-1969) proved that there exist infin-
itely many integers k such that each of the numbers N = k-2" + 1
(n=1,2,3,...) is composite. Three years later, Selfridge proved that the
number k = 78557 is such a number. Prove this last result of Selfridge
by establishing that, in this case, IV is always divisible by 3, 5, 7, 13, 19,
37 or 73.

Find three prime factors of 1027 + 1.

In order to obtain the factorization of the odd integer n > 1, it certainly
helps to notice that, if n is composite, it is always possible to write n as

(*) n=2%—y*=(x+y)(x —y) with z,y positive integers, z —y > 1,

thus revealing the factors z + y and z — y of n (see Problems 81 and 82).
To obtain a representation of type (x), we may proceed as follows. We
look for an integer x such that x? —n is a perfect square, that is such that
w2 —n =y

As a first value for z, we choose the smallest integer k such that k? > n,
and then we try with £+ 1, and so on. By proceeding in this manner, it is
clear that we will eventually find an integer = such that 22 —n is a perfect
square, the reason being that n is odd and composite. This factorization
method is called FERMAT’S FACTORIZATION METHOD.

To show the method, we take n = 2001. Since /n = 44.7325..., we
shall successively try several values of z starting with x = 45; we then
obtain the following table:

x 2 —n =7 Perfect square ?
45 452 —2001 = 24 NO
46 462 —2001 =115 NO
47 47?7 — 2001 = 208 NO
48 482 — 2001 = 303 NO
49 492 — 2001 = 400 YES

Hence, 2001 = 49% —20% = (49 +20)(49 — 20) = 69- 29, thus providing
a factorization of 2001.

Proceed as above in order to factorize 2009, and then use Fermat’s
factorization method to find two proper divisors of n = 289 751.
Fermat’s factorization method works very well when the odd integer n
which is to be factored has two divisors of roughly the same size. But
if n = pq, where p < ¢ are far apart, the number of steps to reach a
factorization may be very large. But this difficulty may be overcome. For
instance, take the number n = 1254 713. Multiply this number by a small
prime number pg, the goal being to obtain a number m = pon = dids,
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where d; and ds are two positive integers whose quotient da/d; is close to
1. Use this strategy to obtain the factorization of n.

Assume that n = pq, where p and q are two prime numbers satisfying
p < q < 2p. Let § be the number defined by

145
P

so that 0 < § < 1. Show that the number of steps necessary to factorize
2

n by using Fermat’s factorization method is approximately %

Knowing that the number n = 188686013 is the product of two prime
numbers p and g such that

P 1

- =3 < —,

q l 100

find the factorization of n.
Given an integer r > 2 and an odd integer k > 5, consider the number

n=rf 4442 e 41

Prove that the number n has at least three prime factors and moreover
that they are distinct if r > 3 orifr =2 and k > 7.
Let k be a positive integer. Show that {2 +2F-1 4 2k-2 4 ... £ 21 +1}
represents the set of all positive odd numbers < 2¢+1 — 1,
The number 11 is prime, while it is easy to check that the numbers 111,
1111 and 11111 are composite.

(i) Show that if a number of the form 111...1 = (10* — 1)/9 is prime,

——

k
then the number k is necessarily a prime.

(ii) Show that, if p is a prime number, then each prime factor of
(107 — 1)/9 is of the form 2jp + 1 for a certain positive integer j.

(iii) Use a computer to find the five smallest prime numbers p such that
the number corresponding to (107 — 1)/9 is prime.

(iv) Use a computer to obtain the factorization of the numbers (107 —-1)/9
for each prime number p < 50.

Show that each positive integer n for which there exist positive integers

k, x and y such that

(%) n = g2+l | g2kl

is composite.

Let n be a positive odd integer for which there exists a prime number
po < /7 such that pg - n can be written as the sum of two positive cubes.
Show that n must be a composite number.

Consider the number n = 52657 403. Show that 7n can be written as the
sum of two cubes (one of which is rather small!) and conclude that n is
composite and divisible by 719.

Consider the number n = 237749938896 803. Show that 11n can be
written as the sum of two fifth powers (one of which is rather small!) and
conclude that n is composite and divisible by 1213.

Let n > 3 be a squarefree odd composite number. Show that if for each
prime divisor p of n, we have p — 1|n — 1, then n is a Carmichael number.
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(390) Let p > 5 be a prime number such that 2p — 1 and 3p — 2 are primes.
Show that the number n = p(2p — 1)(3p — 2) is a Carmichael number.

(391) Use Korselt’s Criterion (mentioned in the remark on the solution of Prob-
lem 389) in order to prove that each Carmichael number must have at
least three distinct prime factors.

(392) In the remark attached to the solution of Problem 389, we observed that
an integer n = ¢q1q2---qk, where k > 3 and 2 < q; < g2 < ... < qi are
prime numbers, is a Carmichael number if and only if

k
(+) o-U[Ja-1  G=12...k
=1

Show that condition () can be replaced by the condition

k
qj_l‘Hqi_]- (.7:11277k)
5
(393) Observing that
(%) 327763 = 30° + 67% = 513 + 583,

find the factorization of 327 763.
(394) Searching for a prime factor of n = 48790 373, we observe that

7-n = 341532611 = 699% + 83,

Use this information to obtain the factorization of n.

(395) In 1956, Paul Erdés raised the question of obtaining the value of the
smallest integer n > 3 such that 2™ — 7 is prime. Use a computer to find
this number n as well as the five next numbers n with the same property.
Show that, in this search, one may ignore even integers n, the integers
n =1 (mod 4), the integers n = 7 (mod 10) as well as the integers n = 11
(mod 12).

(396) Let a > 2 be an integer and let p be a prime number such that p does not
divide a(a? — 1). Show that the number

a?r -1

n=-—-—
a? -1

is pseudoprime in basis a. Use this method to find pseudoprimes in basis
2 and 3.

(397) Show that there exist infinitely many pseudoprimes in basis 2.

(398) Let a and m be two positive integers such that (a,m) = 1. We say that s
is the order of ¢ modulo m if s is the smallest positive integer such that

a® =1 (mod m). Show that if a™ =1 (mod m}), then s|n.
(399) (Lucas’ TEST) Let n > 3 be an integer such that for each prime factor
q of n — 1 there exists an integer a > 1 such that a”~! = 1 (mod n) and

a(®1/9 £ 1 (mod n). Show that n is prime.

(400) Let n = 10'2 + 61. First verify that 2253947 - 12667849 is indeed the
factorization of n — 1, and then use Lucas’ Test, explained in Problem 399
(with an appropriate choice of a), to show that n is prime.
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(401) Use the primality test of Lucas, explained in Problem 399, to prove that
the numbers n = 7% + 1, where r takes successively the values 1910, 1916
and 1926, are all primes.

(402) Let n = 10'2 + 63. Verify that n — 1 =2-32.7.47- 168861871, and then
use Lucas’ Test, explained in Problem 399 (with an appropriate choice of
a), to show that n is prime.

(403) (POLLARD p — 1 FACTORIZATION METHOD) Let n be a positive integer.
Assume that n has an odd prime factor p such that p— 1 has all its prime
factors < k, where k is a relatively small positive integer (such as k = 100
or 1000 or 10000), so that (p — 1)|k!. Let m be the residue modulo n of
2% and let g = (m — 1,n). Show that g > 1, thus identifying a factor of
n.

(404) Use the Pollard p — 1 factorization method to find the smallest prime
factor of the Fermat number Fy = 22° + 1.

(405) Use the Pollard p — 1 factorization method and a computer to factor the
number 252123019542987435093029.

(406) Use the Pollard p — 1 factorization method and a computer to obtain the
three prime factors of the Mersenne number

271 _ 1 = 2361183241434822606847.

(407) Use the Pollard p — 1 factorization method and a computer to factor the
number 136258390321.

(408) Let n = 302446877. Let m be the quantity 22 modulo n. Show that
g = (m—1,n) = 17389. Use the Pollard p — 1 factorization method to
conclude that 17389 is a (prime) divisor of 302 446 877.

(409) Show that each prime factor p of the Fermat number F,, = 22" + 1 with
n>2is of the formp=Fk-2"*2 41, k€ N.

(410) Use the result of Problem 409 in order to prove that 641 is a prime factor
of F5 = 22" +1 = 4294967 297.

(411) Use the result of Problem 409 in order to prove that 274177 is a prime
factor of

Fy = 22° 4+ 1 = 18446744073 709 551 617.
(412) (PEPIN’S TEST) Let F,, = 22" + 1 be a Fermat number and let k > 2 be
an integer. Show that, for n > 2,

k
F,, is prime and (F—) =-1 = k77 =-1 (mod F,).
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7. Integer Parts

(413) Let o, 8 € R. Show that

(@) (o] +[B] + [@+ 8] < [2a] + [26];
() [a] + [8] + 2[a + ] < [3a] + [38];
(c) [a] + [B] + 3[a+ 6] < [4a] + [48];
(d) 2[a] + 2[8] + 2[a + 6] < [4a] + [48];
(e) 3[a] +3[B ]' [a+ 8] < [4a] + [44].

(414) Show that (2n

is an even integer for each n € N.

(nl)?
(415) Let m,n € N. Show that:
2 2 4m)!(4n)!
(a) ('—'r'n)(_n_)_' is an integer; (b) (4m)!(4n) 3 is an integer.
mlnl(m +n)! ntm!((m +n)!)
(416) Let a; > 0,3 = 1,2,...,r, be integers such that a; +ay + - -+ a, = n.
n!
Show that —————— is an integer.
al!az! cee ar!

(417) How many zeros appear at the end of the decimal representation of 23!?

(418) Show that the last digit of n! which is different from 0 is always an even
number provided n > 5.

(419) Find all positive integers n for which the number of zeros appearing at
the end of the decimal representation of n! is 57. What happens when the
number of zeros is 60 or 617

(420) Let n be a positive integer.

(a) Show that the largest integer o such that 5% divides (5" — 3)! is
5" —4n —1

(b) Let p be a prime number and ¢ a positive integer smaller than p.
Show that the largest integer « such that p® divides (p™ —i)! is
pt—(p—1n-—1
p—1 '

(421) Let n be a positive integer. Find a formula which reveals explicitly, for a
given prime number p, the unique value of « such that

n

[Ti).

=1

pa

(422) Let n be a positive integer. Find a formula which reveals explicitly, for a
given prime number p, the unique value of a such that

n

[[ei+1)

1=0

(03

p

and use this to show that

oS (5] 3)

k=1

(423) Find all natural numbers n having the property that [/n] is a divisor of
n.
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(424) Prove that for each integer n > 1,

[Vh+Vn+1] = [Vin+1] = [Vin+2] = [Vin + 3].

(425) Prove that for each integer n > 0,

[Vr+vVn+1+vn+2]=[Von+8].

(426) Let m and k be positive integers. Show that
m—k m+1
T U Y 2=0.
] ()] e

0 ifzeR\Q,
1 ifzeqQ,

(427) Show that

lim [cos®(m!mz)] =

where [y] stands for the largest integer smaller or equal to y, and thus
establish that the function f: R — {0,1} defined by

f(z) = mlgnoo [cos?(m!mz)]

represents the characteristic function of the rational numbers.
(428) Show that, for each positive integer n,

n+1 n+2 n+4 n+8
e R e e
(429) Show that for each m € Z,
[m—l?
m*

25 ] _|83m+13
n 25 ’

3

(430) Let m € Z. Show that the expression

dm+4 _
13

does not depend on m.
(431) Given an integer n > 2, show that, for each positive integer k < n,

(%) i[”;j]zn%

Jj=1

n—1

1
(432) Show that if & € R, we have [a] + {a-l— ;] + 4 [a + ] = [na]

for each positive integer n.

(433) Show that if @ € R, we have [%] + [O“L 1] TR [ﬁ+z_—1] ~ []

for each positive integer n.
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(434) Let m and n be positive integers such that (m,n) = 1. Show that

Z [%k] MUED (RS}

k=1
(435) Let m and n be positive integers such that (m,n) = d. Show that

’f{mk} (m-1(n-1) d-1

|- 2 2

k=1

(436) Establish the formula obtained in 1997 by Marcelo Polezzi that provides
the value of the greatest common divisor of two positive integers m and
n:

m—1 .
jn
=2 I — mn.
(m,n) Z[m}—}—m-{—n mn
(437) Consider the arithmetical function f defined by

f(n)=(m+1)*+n— [ (n+1)2+n+1r (n=1,2,3,...).

Evaluate the quantity f(n) —n.
(438) Given an integer n > 2, show that
n— sp(n)

nl = H P, where ap = P

p<n

)

where s,(n) stands for the sum of the digits of n in basis p.
(439) Evaluate the series

i ollvall 4 9=llvall
n=1 2
where ||z| stands for the closest integer to z.
(440) The characteristic function of the odd numbers defined, for each integer

n > 1, by
1 ifnis odd,
x(n) = o
0 if n is even,

can be written in a single expression by using the function [z]; indeed,

X(n):n—Z[g} (n>1).
Find a similar simple formula for the function

{1 if n is odd,

2 if nis even.

f(n) =
(441) In Problem 1, we established the two formulas
6 9 ? LY A ]
5 ni(n+1)?
B 4

P4+234+3% 4+ 4n (n=1,2,3,---).
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(442)

(443)

(444)

(445)

(446)
(447)
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Establish similar formulas for the two sums
An =121+ 2V + B2+ + [0 - 1D)Y?] (n=2,3,4,..)),

B =[]+ 2]+ 3%+ +[(0* = DV?] (n=2,3,4,..),
where, as usual, [z] stands for the largest integer < z.
Let a be the positive solution of the quadratic equation 22 — z — 1 = 0.
Show that for each n € N, we have

[a®n] = [a[an] +1].

Show that for each n € N, the positive solution a of the equation z? — x —
1 = 0 verifies the equation

2[an] = [a?[2an] + 1].

Show that the number N of positive integer solutions z, y of the inequality
zy < n, where n is a fixed positive integer, is given by

RO HED S R

Let n € N. For each integer £ > 0, find the number of integers ¢
(1 £ % < n) which are divisible by 2% but not by 2¥*1. Establish also

that

o0

>[5 tg) =

, 2 2 '

Jj=1
Thus, by doing so, it will have been proved that one can evaluate the sum
5+ %+ %+ by substituting each term by its closest integer (choosing
the largest one if two such numbers exist).

Show that for each o € R, we have lim @ =«

Show that for each nonnegative real number « and for each positive integer
k, we have [a!/*] = [[o]/*].
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8. Arithmetical Functions

(448) One of the nice properties of Euler’s ¢ function is given by the formula
> din ¢(d) = n. Using computer software, write a program which allows
one to compute the value of 3 dln f(d), where f is a given arithmetical

function, for different values of n, for example, for n = 1,..., 100.
(449) Use the program called for in Problem 448 to show that, for n = 1,...,
1000,

Zr(d) =0 (mod 3)

d|n
except for n = k3, k € N. To do so, write a program that confirms that
indeed this is true for n =1, ..., 1000.

(450) Is it true that, for each integer n > 0, there exists a perfect number located
between 10" +1 and 10”1 +1? Is it true that the last digit of the perfect
numbers alternates between 6 and 87 Here, the use of a computer may
prove useful.

(451) Show that if f and g are multiplicative functions, then their product fg
is also a multiplicative function. If f is a multiplicative function, can one
say that kf, for k € R, is also a multiplicative function? What about
f+g?

(452) Does there exist a multiplicative function f such that

£(30)=0, f(105)=1 and  f(70) =17

(453) Let t; = 1,ty = 3,t3 = 6,...,t, = k(k + 1)/2,... be the sequence of
triangular numbers. Let f be the arithmetical function defined by f(n) =
1/k, where k is the only integer satisfying tx—1 < n < tx, so that

> fn) =1+ OISV PR U ISP SOOI
- 2 3 3 3 k ko
n<ty ———

for each positive integer k. Prove that
1
5\/ 8n — 7

-1

b

o) =|

where ||z|| stands for the closest integer to x.
(454) Let f be the arithmetical function defined by

f)=n-1+[¥n-1+[¥n-1+- (n=12,...).

Show that limsup,,_, . (f(n) — f(n — 1)) = +o0.
(455) Indicate which amongst the following functions are totally multiplicative:

=Hpa U?(”) = Zdz’

pln din
o) =220 hm)= S W2d)d,  p(n) = 2%,
d|n
(456) Show that the function f(n) = [y/n] — [v/n — 1] is multiplicative. Is this

function totally mult1phcat1ve7
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(457) A function f is said to be strongly multiplicative if it is multiplicative and if
also f(p®) = f(p) for each prime number p and each o € N. Identify those
functions, amongst the ones given below, that are strongly multiplicative:

yn)=]]p, o2n) =D &  gn)=2*", h(n)=> p*dd

pln d|n d|n

(458) Let f be a multiplicative function. Is the function g defined by g(n) =
2dn u%(d) f(d) necessarily strongly multiplicative?

(459) Let f be an arithmetical function which is both strongly multiplicative
and totally multiplicative. Is it true that {f(n) : n =1,2,3,...} contains
at most two elements? Explain.

(460) Let g be an arithmetical function defined, for each n > 1, by

1 ifn=0 (mod 3),
gn)=<2 ifn=1 (mod 3),
3 ifn=2 (mod3).

Is it true that g is a multiplicative function? Explain.
(461) Prove that an arithmetical function f such that f(1) = 1 is multiplicative
if and only if, for each m,n € N,

f((m,n))f([m, n]) = f(m)f(n).

(462) Let (n) be the arithmetical function which represents the kernel of n,

that is y(n) =[], p. Show that:
(a) ~y is a multiplicative function;
(b) ¥(n) = 324, [n(d)|¢(d) for each integer n > 1.

(463) Show that if the abc conjecture (see page 12) is true, then for all € > 0,
there exists a constant M = M (e) such that for each integer n > 2, we
have

n< M -y(n?—1)1"e
where v(m) is the product of the prime factors of m.
(464) Let f be a multiplicative function and let k be a positive integer such that
f(k) # 0. Show that the arithmetical function g defined by
f(kn) . o
g(n) := ———== is also multiplicative.
"= )

(465) Let f : N — N be a strictly increasing function such that f(2) = 2 and
fimn) = f(m)f(n) if m and n are relatively prime. Show that f is the
identity function, that is that f(n) = n for each n > 1.

(466) Let f be an additive function. Assume that, for each positive integer n,

k k
lim @ exists. Show that the function g defined by g(n) = klim fn7)

k—o0

is totally additive.
(467) Let f and g be two multiplicative functions. Show that the function h
defined by

h(n) = Z f(d)g(’f‘) (n: 172a"‘)
(@

is also a multiplicative function.
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(468) Let f and g be two multiplicative functions. Show that the function h
defined by

hin)= > fdg(r) (n=1,2,.),

[d,r]=n

where the sum runs over all ordered pairs (d,r) such that [d,r] = n is a
multiplicative function.

(469) Let f be a multiplicative function such that, for each prime number p,
limg— oo f(p*) = 0. Do we necessarily have that lim, .. f(n) = 07 Ex-
plain.

(470) Let f be a multiplicative function such that, for each positive integer
k, limy_o f(p*) = 0. Do we necessarily have that lim, ., f(n) = 0?
Explain.

(471) Let f be a totally additive function which is monotonically increasing;
prove that there exists a constant ¢ > 0 such that f(n) = clogn for each
integer n > 1.

(472) Consider the arithmetical function f defined by f(1) = 1 and for n > 1
by

f(n) =

Define the functions f9, f!, f2,... as follows: f%(n) =n, fl(n) = f(n),
f2(n) = f(f(n), f2(n) = f(f2(n)),..., f¥(n) = f(f*'(n)),.... The
Collatz Problem (also called the Syracuse Problem) consists of attempting
to establish that for each positive integer n, there exists k£ € N such that
f¥(n) = 1. This result is most likely true, but no one has ever been able
to prove it. However, partial results have been obtained.
(a) Let a and j be two positive integers. What is the value of f7(2%)?
(b) Let o € N. For which values of j € N is it true that f7(2%) = 17
(c) What is the smallest value of n € N such that f¥(n) = 11 for a
certain positive integer k?
(d) Show that, if n is a positive odd integer, then f3(n) < 3n+1ifn=1
(mod 4) while f3(n) > 4n if n = 3 (mod 4).
(e) Find an integer n such that f2**1(n) is odd for k = 0,1,2,3,4 and
such that f2*(n) is even for k = 0,1,2,3,4, 5.
(f) Is it true that if f3(n) > n, then f3(n +2) < n+2?
(g) Given an odd positive odd n, what is the probability that f3(n) is
larger than n?
(h) Consider the arithmetical function g defined by g(1) = 1 and for

n/2 if n is even,
3n+1 ifnisodd.

n > 1 by
n/2 if n is even,
oy =72
5n+1 if nis odd,
and then define the functions g°, g*, g2, ... as we did for the function

f- Show that the conjecture to the effect that “for each n € N there
exists k € N such that g¥(n) = 17 is false.

(i) Let n > 3. We introduce the function Syr(n) which stands for
the smallest positive integer a such that f®(n) = 1. For instance,
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Syr(8) = 3. Show that Syr(n) > log, n, where log,(n) stands for the
logarithm of n in basis 2.

(j) Let n > 3 and let Syr(n) be the function introduced above. Prove
that if n is odd, then Syr(n) > log, n + 3.

(k) Let @ € N and consider the number n = 2*+1 — 1. Show that

fH#(n) =3k. 2071 4 for each integer &k, 1 < k < ¢,
and therefore that the sequence of iterations

F2(n), 1 (n), fo(n), ..., f2%(n)
is strictly increasing.
(1) Let & and n be as in (k). Show that

f**n)=2-3*-1.

(m) Let @ € N and consider the sequence of integers ng, n1, ng, . . . defined
by n; = j2% + (2% — 1). Show that
2 (n;) = (G +1)3* -1, for each j.
(n) Given an arbitrary large real number C' > 0, show that there exist
two positive integers n and k such that f*(n) > Cn.

(0) Consider the arithmetical function f. defined by f.(1) = 1 and for
n > 1 by

fun) = n/2%  ifn =20 with 3> 1 and r odd,
U 18n+1 ifnis odd,

and then define the iteration functions f0, f1, f2, ...as we did for the

function f, and establish a table of the values f0(n), fi(n), f2(n),...,
0(n) forn =1,2,3,...,50. Now, given an arbitrary positive integer
n, can we conclude that there necessarily exists a positive integer k
such that f¥(n) = 17 Is there here an analogy with the “standard”
Collatz Problem?
(473) Let a, b, c be positive integers such that (a,b,c) = 1. Is it true that

7(abc) = T(a)T(b)r(c) ?
(474) Find the smallest positive integer n such that
(a) 7(n)=9; (b) 7(n)=10; (c) 7(n)=15.
(475) Identify all natural numbers having exactly 14 divisors.
(476) Find the largest prime number p such that
(a) plr(200);  (b) plo(20));  (c) PPIT(35!); () p*|o(35)).
(477) How many positive integers n are there dividing at least one of the two
numbers 10%® and 203°?
(478) Prove that
SEC
2n Leon -1
n=1 n=1

.
(479) Consider the sequence (by) defined by
by =2, bk+1=1+b1b2-~~bk (k=1,2,...).

Show that
(i) for each integer k > 1, byy1 = b2 — by + 1,
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Use this to show that the arithmetical function g defined by

g(n):n—l—i[ngl]

=1+

has the representation
“(n—-1
o =3 {5~}
Jj=1

where {z} stands for the fractional part of x.

(480) Let 71(n) be the number of odd divisors of n. Prove that 71 is a multi-
plicative function.

(481) Given a positive integer n, show that the number of ordered pairs of
positive integers a, b such that ab = n and (a,b) = 1 is 2<("),

(482) Let n be a positive integer. Show that the number of ordered pairs of
positive integers a, b such that [a,b] = n is 7(n?).

(483) Let d and n be positive integers such that d?|n. Show that the number
of ordered pairs of positive integers a, b such that (a,b) = d and ab = n is
2¢(n/@*)  Use this to show that

T(n) =Y w(n/d?).

d?|n

(484) Let n be a positive integer and let 2% be the largest power of 2 that divides
n. To which of the following five values is the quotient 7(2n)/7(n) equal:

a+3 o+ 2 a+1 a .,
a+2 a+1’ a  a-1"

b

Explain.
(485) Show that 7(n) is odd if and only if n is a perfect square.
(486) Show that if o(n) is a prime number for a certain positive integer n, then
7(n) must also be a prime number.
(487) Show that o(n) is odd if and only if n is a square or two times a square.
(488) Show that, for each positive integer n,

H d=nTMm/2
d|

What happens if 7(n) is odd?

(489) Prove that for each integer n > 1, we have o2(n) > nr(n), where o3(n) =
Ed|n d?.

(490) Find the minimal value of 7(n(n + 1)) as n runs through the positive
integers greater or equal to 3.

(491) For each integer n > 1, consider the functions f;(n) and f2(n) which stand
respectively for the product of the odd divisors of n and for the product
of the even divisors of n. Establish the following formulas:

filn) = m7(M/2
) = ()

T(m)/2 _ (2n)a7(m)/2’
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where m and « are defined implicitly by n = 2%m, m odd.

(492) Show that H m2/ml=T(m) — 1 where [y] stands for the largest integer

m=1

<y
(493) Given a positive integer n, consider the corresponding sequence

n, 7(n), 7(r(n)), 7(r(r(n))),....

Identify those positive integers n for which the above sequence contains
no perfect squares.

(494) For each real number a, define the function o, by o4(n) = 324, d*. It is
clear that 7(n) and o(n) are particular cases of o4(n). Prove that

a(a+1) _ 1
P = ifa#o,
pr—1
o'a(n) = p*|In
H (a+1) ifa=0.
p|n

(495) Assume that p and ¢ are odd prime numbers, and a and b are positive
integers such that p > ¢®. Show that, if p® divides o(p®)o(g®), then
p* =o(q").

(496) Let o*(n) be the sum of the odd divisors of n. Show that ¢* is a multi-
plicative function.

(497) Show that 3|o(3n — 1) and 4|o(4n — 1) for each positive integer n. Is it
true that 12|o(12n — 1) for each n > 1?7 Explain.

(498) Let p be a prime number and let a and b be nonnegative integers. Show
that o(p?)|o(p®) if and only if (a + 1)|(b+ 1).

(499) Show that o_4(n) = n™%,(n) for each real number a and each positive
integer n. In particular, show that the sum of the reciprocals of the
divisors of a positive integer n is equal to o(n)/n.

(500) Show that n is an even perfect number if and only if there exists a positive
integer k such that n = 2¥=1(2F — 1), where 2¥ — 1 is a prime number.

(501) In 1958, Perisatri proved that if n is an odd perfect number, then

1 1 T
§<Zz—7<210g§

Is it true that these inequalities still hold for each even perfect number n?
Explain.

(502) Show that if n is an even perfect number, then 8n + 1 is a perfect square.

(503) Let a be a positive integer and p a prime number. Can p® be a perfect
number?

(504) Show that every even perfect number ends with the digit 6 or 8.

(505) Show that every even perfect number larger than 6 can be written as the
sum of consecutive odd cubes.

(506) Show that each odd perfect number must have at least three distinct prime
factors.

(507) Find all natural numbers n having the property that n and o(c(n)) are
perfect numbers, or otherwise show that no such number n exists.
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(508) A natural number n is said to be tri-perfect if o(n) = 3n. Show that each
odd tri-perfect number must be a perfect square.

(509) Show that the only tri-perfect numbers of the form 2°m with 1 < a < 10,
m odd and p?(m) = 1 are the numbers 120, 672, 523 776 and 459 818 240.

(510) A positive integer n is called respectively deficient or abundant if the sum
of its divisors is < or > 2n. Show that if the greatest common divisor of
two positive integers a and b is deficient, then there exist
(a) infinitely many deficient numbers n such that n = a (mod b);
(b} infinitely many abundant numbers n such that n = a (mod b).

(511) Let n be an even perfect number. Show that

7(n) = [logy n] + 2,

where log, n stands for the logarithm of n in basis 2.

(512) In 1997, Gordon Spence discovered the 36-th Mersenne prime, namely
22976221 _ 1 Establish first a general formula allowing one to quickly
compute the number of digits of a given large integer, and then use this
formula to determine the number of digits contained in the prime number
discovered by Spence.

(513) Let k be an arbitrarily large natural number. Prove that there exists an
integer n such that

AU
n

(514) Show that an even perfect number is a triangular number, that is a number
of the form n(n+ 1)/2.

(515) Show that a perfect number having & distinct prime factors has at least
one prime factor which does not exceed k.

(516) Let qy,. .., gx be distinct prime numbers. Show that

(Q1+1)(‘I2+1)"'(Qk+1)<2< Q192 " gk
Qg2 Gk - (n = 1)(g2—1)---(qr — 1)

is a necessary condition for n = Hle ¢;" to be a perfect number.

(517) Show that if n is an even perfect number, then ¢(n) = 28=1(2¥=1 — 1) for
a certain positive integer k.

(518) Is it true that ¢(n) is a multiple of 10 for infinitely many positive integers
n?

(519) Calculate the number of positive integers < 600 which have a factor > 1 in
common with 600 and then count the number of positive integers < 1200
which are relatively prime with 600.

(520) Count the number of positive integers < 4200 which are relatively prime
with 600 by observing that 4200 = 7 - 600.

(521) If m and k are positive integers, show that the number of positive integers
< mk which are relatively prime with m is equal to k¢(m).

(522) Let m,n € N. Show that

p(mn) = (m)¢(n)

d
o(d)’
(523) Show that for n > 2, ¢(n) is an even number.

(524) Show that the number of fractions a/b, (a,b) = 1, such that 0 < a/b <1,
b being a fixed positive integer, is ¢(b).

where d = (m,n).
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(525) Show that if m|n, then ¢(m)|d(n).

(526) Identify all positive integers n such that ¢(n)|n.
(527) If d|n and k € N, show that ¢(nd*) = d*¢(n).
(528) Identify all positive integers n such that 5¢(n)|2n.
(529)

529) Characterize the set of positive integers n such that

(a) (2n) > ¢(n);  (b) (2n) = (n);  (c) $(2n) = ¢(3n).

(530) Let p be an odd prime number such that 2p + 1 is also a prime number.
Show that if n = 4p, then ¢(n + 2) = ¢(n) + 2.

(531) Show that for each integer n > 2, the sum of positive integers < n and
relatively prime with n is equal to né(n)/2.

(532) Let n > 1 be an integer. Show that 2<(™~1|¢(n).

(5633) Show that ¢(n) is a power of 2 if and only if n = 2%F; --- F,., where « > 0
and F; =22 +1,i=1,2,...,r, are Fermat primes.

(534) Find the largest prime number p such that
(a) pl8(95!); (b) p?|¢(95!); (c) P*H(951);  (d) p*|H(95)).

(535) Find the largest positive integer n such that ¢(n) < 500.

(5636) Is it true that ¢(8m + 4) = 2¢{4m + 2) for each integer m > 07

(537) Let a,b € N such that a|b. Show that for each integer n > 0,

d(a*n +ab)  ¢lan +b)

d(abn +a2)  ¢(bn+a)’

(538) Show that ¢(n) > n/7 for all natural numbers n such that w(n) <9.

(539) Given an odd integer n > 3, show that there exists a prime number p
which divides (2¢(™) — 1) but not n.

(540) Show that an integer n > 2 is prime if and only if ¢(n)|(n — 1) and
(n+1)|o(n).

(541) Show that if e runs through the even divisors of n and d runs through the
odd divisors of n, then

Z d(n/e) 0 ifnisodd,
eln

> d(n/d) o
dn 1 if nis even.
(542) Show that for m > 2,
¢(m) 1
k=1 k
(k,m)=1

is never an integer.

(543) Let f(n) be the product of all the positive divisors of n. Does f(m) = f(n)
automatically implies that m = n?

(544) Let (i,m) be the greatest common divisor of the positive integers ¢ and n.
Express

n
i=1

in terms of the prime factors appearing in the factorization of n.
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(545) Let f be the arithmetical function defined by

1 if nis even,
fn) = {2 if n is odd.
_ | S
Let S(z) = Z f(n). Find the value of xll)n;o —

n<x

1
(546) Show that the expression Z — can become arbitrarily large if n is chosen

pin
appropriately.
(547) Show that
(%) > f@f)=T()f(n) (n=1,2,..)

ab=n
if and only if f(n) is totally multiplicative.
(548) Prove that for each positive integer n, we have
2¢(") < 7(n) < 290,
(549) Let
__7(n)
be the harmonic mean of the divisors of n. Show that n is an even perfect

number if and only if n = 2H(™-1(2HM) _ 1),
(550) Show that

()’ =33 > u@ (n=12..).

cln ble alb

H(n)

(551) Let f: N — Z be a function satisfying f(n +m) = f(n) (mod m) for
all integers m,n > 1; any polynomial with integer coeflicients is such a
function. Let g(n) be the number of values (counting repetitions) amongst
f(), f(2),..., f(n) which are divisible by n and let h(n) be the number
of these values which are relatively prime with n. Show that g and h are
multiplicative functions and that

h(n) = Z,u(d)g(d)% =n]] (1 - %@> (n=1,2,...).
din pln

(552) Show that

Z)‘(d) _ {l if n = m? for a certain integer m > 1,

0 otherwise,
d|n

where A stands for the Liouville function.
(553) Let f be a multiplicative function such that f(2) = 1. Prove that if n is
an even integer, then

> u(d)f(d) =0.

d|n
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(554) Let f:[0,1]NQ — R and let, for each integer n > 1,

=Zf(§> and F*(n Z Z f()
k=1 din 1<k<d
(k,d)=1

Show that

=Y F*(d) (n=12,.).
d|n
(555) Given an integer m, let

Z ™ (n=1,2,...).
(k, n) 1
Show, using the result of Problem 554, that
Z(bmd) 1m 42+ 4 n™

nm

(n=1,2...).
d|n

Use this equation to show that
m ) (17 4 2m p ()" _
Z k dEd u(d) (17 + 2™ + +(d) ) (=12.).
(k=1 I
(556) Prove that for each positive integer n,

Z k= Ze(n) +5 Y ud)

:1 d|n
n :

(557) Prove that for each positive integer n,

n2 n
Z k? = n)+72u(d)+gﬂ(l—p)
dln pln
(k, n) 1

(558) Prove that for each positive integer n,

Z B =g+ Zu ”{H(l—p)

* n) pln
(559) For each positive integer n, set f(n Z ,u . Establish a formula for

f(n) in terms of the canonical representatlon of n.

(560) Is it true that n = Z u(d)o(n/d) for each positive integer n?
din
(561) Show that, for each positive integer n,

1 oa(n
> 5=

d|n
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2
(562) Show that ZTs(d) = (Z T(d)> for each positive integer n.

djn d|n
(563) Show that each of the following relations holds for each integer n > 1:
S lud)] =240 Y w(dyr(d) = (-1)°®; 3 p(d)A(d) = 240,
d|n dn dn

Y uld)o(d) = (-1)*™ [[p and Y u(d)¢(d) = (1) [[(> - 2).

d|n pln d|n pln
(564) Show that, for each positive integer n,
12 (d)

(565) Let g be a multiplicative function. For each positive integer n, set

=Y wd)g(n/d)

d|n

and show that
F(n)= ] (s@*) —9(@*™)).
p|ln
(566) Let f be the function defined by
Y ¢@e(r)  (n=12,..),
[d,r]=n

where the sum runs over all ordered pairs (d,r) such that [d,7] = n (see
Problem 468). Show that

=l (-3)

(567) Let A be the von Mangoldt function. Show that

ZA(d)zlogn (n=1,2,...).
d|n
(568) Prove that for each positive integer n,
Zu )log(n/d).
d|n

(569) Let f be a multiplicative function. Show that

S (=)f(d) =

d|n

=Y f(d), if n is odd,

d|n

> Fd) - 2£(2%)> f(d), ifn=2Fm, (m,2)=1,k>1

dln dlm
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(570) Show that if n is an even integer, then
S (1) 4g(d) = 0.
d|n

What if n is an odd integer?
(571) Let f be an arithmetical function verifying the equation Z f(d) =n for
d|n
each positive integer n. Show that f(n) = ¢(n) for each n > 1.
(572) For each function g defined implicitly above, find a formula for g(n) in
terms of the canonical representation of n:

(a) n? =324, 9(d); (b) p(n) = > apn 9(d).
(573) Show that the function 2*(™n/¢(n) is multiplicative and find a formula
for g(n) in terms of the canonical representation of n, knowing that

qun)_™_ _ Zg(d), for each integer n > 1.
a2

(574) For each positive integer n, show that
n n n w
S (DD p(d) = 2409, F (1) 2Dy (2) = (—1) 22w
d|n d|n

and that

Z(_l)ﬂ(d)QW(n/d) = 1.
d|n

(575) Show that, for each positive integer n,
Y — (—1)%m) gu(n)
;u(d))\(d) (—1)R(m gw(n),

(576) Let g be an arithmetical function such that g(n) > 0 for each positive
integer n and let

f)=1Je@ (=12,
d|n

Show that

gm) =[G/ (n=12..).
d|n

(577) Let k be a real number. Show that, for each positive integer n,

T d®/2m@ntn/d) — i

d|n
(578) Let f be a totally multiplicative function and let F' be defined by

Fin)=> f(d (n=12,...).
d|n

Do we necessarily have that F is also totally multiplicative?
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(579) Prove that for each integer n > 1,

> wn/d)= {#(\/ﬁ) if n = m2,

” 0 otherwise.
|n
n2(d)=1

(580) Let f be an arithmetical function. Show that for each integer n > 1,
[ & @+ = pTarn 1@,
dn
Use this to show that

(+) H dé(d+e(n/d) _ ,n (n =1,2,.. )
d|n

(581) Letting as usual f % g stand for the Dirichlet product of the arithmetical
functions f and g, show that if A stands for the set of arithmetical func-
tions f: N — R such that f(1) # 0, then A is a commutative group with
respect to the operation *; thus, prove successively that:

(a) the Dirichlet product is commutative; that is if f and g are arith-
metical functions, then f x g = g * f;

(b) the Dirichlet product is associative; that is if f,g and h are arith-
metical functions, then (f * g) x h = f % (g x h);

(c) the arithmetical function E defined by E(1) = 1 and E(n) = 0 for
n > 1 is such that f x E = E x f = f for each arithmetical function
fi

(d) for each arithmetical function f such that f(1) # 0, there exists a
function f~! called the inverse function of f (with respect to the
Dirichlet product ) such that f~' % f = f+ f~! = E and that f~!
is given by the recurrence formula

(1) = _1TL————L ) g1 orn
10 =5y 170 m%f(d)f (@) forn>1.

d<n

(582) Let f and g be two arithmetical functions. Show that if g and f * g are
multiplicative, then f is also multiplicative.
(583) Show that if f is a multiplicative function such that f(1) # 0, then its
inverse f~1, with respect to the Dirichlet product #, is also multiplicative.
(584) Let r be a real number and let ¢, be the arithmetical function defined by
t-(n) =n" for each positive integer n. Show that
(a) p*tg = E, where u is the Moebius function.
(b) o, = i, * L9, where o.(n) = Zdr.
d|n
(¢) @ =11 * p, where ¢ is Euler’s function.
(d) u*o =11, where o = 07.
(e) p*xop =11 *tp.
(f) ¢1 *t1 = 137, where 7 = 0.
(8) f = to*toxto, where f(n) =3, 7(d). ,
(585) Show that ¢ ! = 4 and more generally that ' = ue, for each real
number 7.
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(586) For each of the arithmetical functions f given below, determine its inverse
f~! (with respect to the Dirichlet product *):

(i) f(n) =w(n); (i) f(n) = E(n); (i) f(n) = [u(n)].

(587) Let f and g be two arithmetical functions such that f(1) # 0 and g(1) # 0.
Show that

(frg)™t=f""xg™

(588) Let ¢~! be the inverse (with respect to the Dirichlet product *) of the
Euler function ¢. Show that

o) =[[1-p (n=12..).
pln

(589) Let f be a multiplicative function. Show that f is totally multiplicative
if and only if f~1(n) = p(n)f(n) for each integer n > 1.

(590) Show that the inverse, with respect to the Dirichlet product *, of the
Liouville function A is

_ 1 if n is squarefree,
A l(n) = Mn)u(n) = { 0 otherwicsle.

(591) Show that the inverse, with respect to the Dirichlet product *, of o, is
given by
o tn) =) d*u(du(n/d)  (n=1,2,..).
d|n
(592) Let m and n be positive integers. Show that
o(n)o(m) = Z do(mn/d?).
d|(m,n)

(593) Let f be a multiplicative function. Show that the following three state-
ments are equivalent:
(a) There exists a multiplicative function F' such that for all positive m
and n,

(1) flmn) = Y~ f(m/d)f(n/d)F(d).
d|(m,n)

(b) There exists a totally multiplicative function g such that for all inte-
gers m and n,

(2) fm)f(n)y="Y_ flmn/d®)g(d).

d|(m,n)
(c) For each prime number p and each integer a > 1,
(3) SO = F) %) + F* ) (F07) - £2(0))-
(594) Show that, for each positive integer n,

Za(d):nZ%.

din dln
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(595) Show that, for each positive integer n,
n
> s(@)r (5) = o
d|n
(596) Show that, for each positive integer n,
n
Zd)(d)a (E) = n1(n).
d|n
(597) Show that, for each positive integer n,
n
> o(d) = > dr(d).
d|n dln
(598) Show that, for each positive integer n,

Y do(d)=3" (g)Qa(d).
dn

d|n

(599) Let k£ and r be real numbers. Show that

S dokn(d) =Y (%)kor(d).

d|n d|n

(600) Show that, for each positive integer n,

Zo(d)a (%) = %dT(d)T (%) .

d|n

(601) Let r be a real number. Show that

Zar(d)ar (g—) = ZdTT(d)T (%) .

d|n d|n

(602) Show that, for each positive integer n,

> u(d)r(n/d) =1.
dln

(603) Show that A = p * log, where A is the von Mangoldt function.
(604) Show that Zuz(d)A(d) = logy(n) for each positive integer n, where
din

v(n) = II,,p and 7(1) = 1 and A stands for the von Mangoldt func-
tion.

(605) Let f be a totally arithmetical function which only takes the values +1
and —1. Let I = [N, N 4+ M|, where M > 3v/N. Assume that there exists
an integer ng < V/N such that f(ng) = —1. Prove that this function f
cannot be constant on the interval I.

(606) Show that the Liouville function A does necessarily take the two values
+1 and —1 on any interval of the form [N, N + 3v/N|, N > 2.

(607) Given an arbitrary real number z > 1, show that
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(608) Given an arbitrary real number z > 1, show that

> s

1<n<lz

(609) Let 6(n) be the largest odd divisor of the positive integer n. Show that
for each integer m > 1,

m
S0
= 3
(610) It is clear that any positive integer n can be written uniquely in the form

n = mr? where m is squarefree. In light of this, justify the chain of
equations

p(n) = p(mr?) = E(r) =Y p(d) =Y p(d)

d|r d?|n

< 1.

(611) Let f be a strongly multiplicative function such that 0 < f(p) < 1 for
each prime number p and such that f(2) = f(3) = 0. Show that, for each
positive integer IV,

S <o
n<N 3

(612) Is it possible to construct a multiplicative function f such that f(2) =0
and such that, as N — oo,

> st~ 2

n<N

(613) Establish that the number A(N) of squarefree integers < N satisfies the

relation
N
AN)= 3 wd) |-
d<vN
(614) Let ¢(n) be Euler’s function and let 7(n) be the function which counts
the number of positive divisors of n. Show that
o) _ . o) _1

lim inf d I _— =,
0o nt(n) an lfln_,so%p nr(n) 2

(615) Consider the sequence u,, = 2™, n > 1. For each positive integer n, choose
the smallest prime number g, satisfying u, < g, < un+1; according to

Bertrand’s Postulate, such a prime number exists. What can be said
o0

1
about the convergence or the divergence of the series E — 7 Explain.
qn
n=1

(616) Prove that for each positive integer n, 7(2" + 1) > 71(n), where 71(n)
stands for the number of odd divisors of n.

(617) Let n > 1 be a composite number. Show that o(n) > n + y/n. Use this to
prove that nlLI{)lo(G(pn +1) —a(pn)) = +oo.
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(618) Show that, for each positive integer n, we have

(3)“™  ifnis odd,

a(n)
n < {2 (g)w(")_l if n is even
3 .

(619) Show that o(n) < n7(n) for each integer n > 2.
(620) Find infinitely many integers n such that o(n) < o(n —1).
(621) Show that for each integer n > 1, n < o(n) < n?.
(622) Let op(n) stand for the sum of even divisors of the integer n > 1. Show
that
op(n) > ar(m)v2n,
where o and m are defined implicitly by n = 2*m, m odd.
(623) Prove that for each integer n > 2, o(n) > ¢(n) + 7(n), with equality if
and only if n is prime.
(624) Let f and g be two multiplicative functions taking only positive values.
Show that for each integer n > 2,
3" F(d)g(n/d) > () +g(n),
d|n
with equality if and only if n is prime.
(625) Show that for each integer n > 2, we have o(n) + ¢(n) < nr(n), with
equality if and only if n is prime.
(626) Let f, g and h be three multiplicative functions. If for each integer n > 1,
f(n) + g(n) > 0 and h(n) > 0, show that,

> f(dh(n/d) + Y g(dh(n/d) > 2h(n) (n=1,2,...),
d|n d|n
with equality if and only if n = 1 or else for each d|n, d > 1, f(d)+g(d) = 0.

(627) Show that for each integer n > 1, o(n) + ¢(n) > 2n, with equality if and
only if n = 1 or n is prime.

(628) Prove that for each integer n > 2, we have o(n) > n + (w(n) — 1)4/n.

(629) Show that for each integer n > 2, we have

$(n?) + ¢((n +1)%) < 2n?.
More generally, show that for all integers n > 2 and k > 2,
$(n*) + ¢((n+1)%) < 2m?*(n+1)7%
(630) Show that

. d(n+1) .. o(n+1)
limsup ———— =00 and liminf —-= =0.
n—>oop $(n) n—oo  ¢(n)
(631) Can one find arbitrarily large integers N such that ¢(n) > ¢(N) for each
integer n > N, while ¢(n) < ¢(N) for each integer n < N?
(632) Show that
(n)r*(n) < n?
for all the positive integers n # 4. For which values of n does equality
hold?
(633) Show that, for each integer n > 2, ¢(n) < n — nl_ﬁ, with equality if
and only if n is prime.
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(634) If n is a composite integer, show that ¢(n) < n —/n.
(635) Show that if w(n) = r for positive integers n and r, then

n
> —.
o = 2
(636) For each n € N, let o(n) = 3°,,, d and o3(n) = 3, d*. Show that
a?(n) 2
< < = vl
) com<otm)  (n=12..)

(637) Show that the mean value of the divisors of the positive integer n is larger
or equal to Hdl/T(").
d|n
(638) Show that

~—

o(n

(639) Show that [],,d = n? if and only if n = p® or n = p?q, with p and ¢
distinct prime numbers.

(640) For each integer n > 1, show that 7(n) < 24/n.

(641) Prove that for each integer n > 3, we have o(n) < n/n.

(642) Prove that for each integer n > 2,

d-1_ 2r(n)(yA-1)

-1
logd logn

Z dz -1 S 2r(n)(n—1)
logd logn

(644) Prove that for each integer n > 2,

1 2¢(m) — 1
[M(1--)<1-——,
P n
pln
with equality if and only if n is prime.
(645) Prove that for each integer n > 2,
Z 1 > w(n) -
P nl/w(n)
pln
(646) Let h be the arithmetical function defined by h(1) = 0 and A(p*) =0 if p

is prime and a a positive integer, and otherwise, that is if n = ¢j* - - - ¢,
with r > 2, ¢; prime, by

w(n) 1
h(n) = _.
( ) ; qi — qi—1

For each positive integer n such that w(n) > 2, show that
1)2

(w(n)
M) 2 By —pim)’
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where p(n) and P(n) stand respectively for the smallest and largest prime
factors of n.
(647) Let H be the arithmetical function defined by H(1) = 0, and for n > 1 by

r(n)
1
Hn)=) —,

where 1 = dy < dy < ... < d,(,) = n represent the divisors of n. Show
that, for each positive integer n,
(r(n) —1)°
H > -—
(n) 2 n—1

(648) Show that 7(2" — 1) > 7(n) for each integer n > 1.

(649) Let m and n be positive integers; show that ¢(mn) < m¢(n). On the
other hand, if each prime number dividing m also divides n, then show
that ¢(mn) = me(n).

(650) For each integer n > 1, show that

o (r[]) <
where [y] stands for the largest integer < y.
(651) Show that ¢(n)7(n) > n for each positive integer n.
(652) Find all the solutions of the equation ¢(n)7(n) = n, where n € N.
(653) Let m and n be integers larger than 2; show that ¢(mn) + ¢((m + 1)(n+
1)) < 2mn.
(654) Consider the arithmetical function ¥(n) defined by

\Il(n):nH<1+%> (n=1,2...).

It is clear that the function W is multiplicative.

(a) Show that ¥(n) < o(n), where o(n) represents the sum of the divisors
of n.

(b) Show that ¥(n) = o(n) if and only if n is squarefree.

(c) We say that a natural number n is U-perfect if ¥(n) = 2n. Prove
that a number n is W-perfect if and only if it is of the form 22 - 3%,
where a and b are positive integers.

(655) Let f be a polynomial with integer coefficients and let

¢*(n) = #{k |1 <k <n,(f(k),n) =1}

Observe that in the case f(n) = n, we find that ¢*(n) = ¢(n), that is
Euler’s function.

(a) Show that ¢* is a multiplicative function.

(b) Show that, for each positive integer n,

¢*(n)=n]] (1 - %) :

where b, =p— ¢*(p) = #{k |1 < k <p, p|f(k)}.
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(656) Let n be a positive integer. Find the number of terms of the sequence
1-2,2-3,3:4,...,n(n+1)

which are relatively prime with n.

(657) Let n be a positive integer. Find a formula which gives the number of
positive integers k < n such that (k,n) = (k+1,n) = 1.

(658) Let n be a positive integer. Find an expression for the number of terms
of the sequence

1-2-3,2:3-4,...,n(n+1)(n+2)

which are relatively prime with n.
(659) Let f(n) be the n-th positive integer which is not a perfect square. Hence
f(1) =2, f(2) =3, f(3) =5 and f(4) = 6. Show that, for each integer
n > 1, f(n) = n+ ||v/n|, where ||z| stands for the closest integer to z.
(660) Show that

1 ifn=1,
Z,u(d): 1 ifp¥n=a<k,
dk|n 0 otherwise,

thus generalizing the result of Problem 610.
(661) Prove that the Liouville function A takes infinitely many times each of the
values +1, —1 when applied to the sequence of integers 2,5,10,17,...,n%+

1,...
(662) Let n be a positive integer. If {a1, as,...,ax} is the set of positive integers
1 < n with (¢,n) = 1, show that
k
s =1,2,...)
;n_ai_(b(n) (n_ YLy )
(663) Let f: N— R and let F(n) =) _ f(d). Show that
d|n
F(n) 7(n)
d) < = ).
Mr<(7)  e=1a

Use this result to show that

[T < (;(%)T(n) (n=1,2,...).

d|n
(664) Show that there exists a positive constant C such that, for each integer
n>2,

¢ < 2otn)

n

(665) Define the derivative f’' of an arithmetical function f by

f'(n)=f(n)logn (n=1,2...).
Show that, given any arithmetical functions f and g, we have
(@) (f+9)=f+47,
(b) (f*xg)=f*g+f*g,
(c) (f7Y) = —f"*(f = f)~! provided that f(1) # 0.

<1
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(666) Given an arithmetical function f, define
- 1
« Fn)= —S"fd n=1,2,..),
(* =Ty T )

where 7(n) stands for the number of divisors of n. Show that if f is
multiplicative, then f is also multiplicative.

(667) Let f be the function introduced in Problem 666. Show that if f is
additive, then f is also additive.

(668) Let 1(n) = 1 for each positive integer n and let u be the Moebius function.
What represents the functions 1 and 7z, where f is defined by the relation
(*) of Problem 6667

(669) Let w(n) = 3, 1. Determine the values of the function @, where fis
defined by the relation (x) of Problem 666.

(670) Let f(n) = 2, where w(n) = > pjn 1. Prove that

where f is defined by the relation (*) of Problem 666.

(671) Let f(n) = 2™ where Q(n) = 2 pe|n @ Show that
— 2a+1 —1
(n)_pgnﬁ (n_1a27"')7

where f is defined by the relation (*) of Problem 666.
(672) Let A be the Liouville function. Show that A(n)7(n) = x(n), where x(n)
is the characteristic function of the set of perfect squares, that is

1 if n=m?,
x(n)Z{

0 otherwise,

and where f is defined by the relation () of Problem 666.

(673) Given a multiplicative function g, show that there exists a multiplicative
function f such that g = f, where f is defined by the relation (x) of
Problem 666.

(674) Let g(n) = 2™, Find the function f such that g = f, where f is defined
by the relation (*) of Problem 666.

(675) Given an arithmetical function f, define

(+) Fn) = oy SH@I@D  (=1,2,..)

d|n
where w(n) =3, 1 and u stands for the Moebius function. Show that
if f is multiplicative, then fis multiplicative.

(676) Let 1(n) = 1 for each positive integer n and A stand for the Liouville
function. Determine the functions 1 and :\\, where f is defined by the
relation (xx) of Problem 675.

(677) We know that 7(n) represents the number of ways of writing a positive
integer n as a product of two positive integers, taking into account the
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order of the factors. In other words,
T(n) = Z 1.
d1d2:n

More generally, given an integer k > 2, let 7x(n) be the number of ways
of writing a positive integer n as a product of k positive integers, taking
into account the order of the factors. In other terms,

Ti(n) = Z 1.
d1d2~~-dk=n
Show that
T =1%x1x...x1.
e —
k

(678) Show that if F(k) = Y f(d) for k = 1,2,..., then Y F(k)=
d|k k=1

™ f(k) for each positive integer n.
k g
k=1

(679) Show that

k=1 k=1
(680) Show that Z o(d) [g] = —n(n + 1) for each positive integer n.
d=1
681) Show that AR [ 2] = logn! for each positive integer n.
k
k=1

B

(682) Show that Z Ak) [E] = [v/n] for each positive integer n.
k=1

(683) Given an integer n > 2 and p a prime divisor of n, let p® be the largest
power of p not exceeding n, meaning that a, is the only positive integer
satisfying p® < n < p*!. Finally, let

Stn)=)"p* (n=23,..).
pln

Show that there exist infinitely many integers n such that S(n) > n.
(684) Let n be a positive integer. Show that

n n n
) =3 [7].
k=1 k=1
(685) Let n be a positive integer. Show that ;a(k) = ,é k [%}

(686) Let n be a positive integer. Show that

S =g 2wt ] (5] +1):
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(687) Let n be a positive integer. Show that

Sy a0 = RICEE ? (2tvm) +1)

(688) For each positive integer n, let S(n) be the set of all positive integers
k such that the fractional part of n/k is > 1/2. Let f be an arbitrary
arithmetical function and let

- Zn:f(k) [%} (n=1,2.).

k=1

Show that

> fk)=g(2n)-2g(n) (n=1,2,...).

keS(n)

Use this result to show that for each integer n > 1,

> ¢k > wk)=-1,

keS(n) keS(n)
kgn)m):lo{g((z:))’ Z()\ V3 — 2[vA)

where ¢, u, A and A are respectively the Euler function, the Moebius
function, the von Mangoldt function and the Liouville function.
(689) Let x be a real number such that |z| < 1. Show that

X
Z 1_xn =T (n=1,2,..),

where ¢ is the Euler function.
(690) Let f and g be two arithmetical functions tied by the relation f(n) =
>_4n9(d), n > 1, and z a real number such that |z| < 1. Show that

(oo} n

Zg( T—n Z (n=1,2,...).

(691) Let n be a positive integer. Consider the square matrix My xn = (bij)nxn,
where the element b;; = (4, ), that is the GCD of ¢ and j. Use the fact
that 3=, u(d)G = ¢(n) in order to prove that

det M = ¢(1)¢(2) - - - p(n),

where ¢ stands for Euler’s function.

(692) Let n be a positive integer and let M = (a;;)nxn be the matrix whose a;;
element is defined by a;; = 7((¢, 7)), where 7(m) represents the number
of divisors of m. Show that det M = 1.

(693) Let n be a positive integer and let M = (a;;)nxn be the matrix whose a;;
element is defined by a;; = o((i,j)), where o(m) represents the sum of
the divisors of m. Show that det M = n!.
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(694) Let n be a positive integer and let M = (a;j)nxn be the matrix whose
a;; element is defined by a;; = p((4,5)), where p stands for the Moebius
function. Show that det M # 0 for 1 < n < 7 and then that det M =0
for n > 8.

(695) Let n be a positive integer and let M = (ai;)nxn be the matrix whose a;;
element is defined by a;; = [¢, j], that is the LCM of 7 and j. Show that

det M = ﬁ(—l)“(k)qﬁ(k)’r(k),

k=1

where w(k) = >, 1, 7(k) = [1,x p and ¢ stands for Euler’s function.
(696) Let k be a positive integer and let f be an arithmetical function. Show

that if
9@ = > f=/n),
n<zx
(n,k)=1
then

fl@y=>_ un)glz/n).
(et

(697) Let f be an arithmetical function. Show that

o fm) =" > wud)f(md).

(nk<_)N1 dlk m<N/d
(698) Let M(z) := Z u(n). Show that
n<lz
> M(z/n) =1.
n<lz

(699) Let p(n) be the smallest prime factor of n, p(1) = 1. Show that

S p(n(n + 1)) = 2a.

n<lz

(700) Recently, when Canada celebrated its 125th anniversary, mathematicians
at the University of Manitoba introduced the notion of “Canada perfect
number”. A composite integer n is called a Canada perfect number if the
sum of the square of its digits is equal to the sum of its proper divisors
> 1. In other words, n is “Canada perfect” if and only if

(+) Y b= 4

1<i<c(n) d|n
1<d<n
where £1,f3,...,£n) are the digits appearing in the decimal representa-

tion of n and where ¢(n) is the number of digits of n. One easily checks
that 125 is “Canada perfect”, since

12 +22 +52 =30 =5+ 25.
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Show that the only Canada perfect numbers are 125, 581, 8549 and 16999:
(a) by using a computer to identify all Canada perfect numbers < 108,
(b) by proving that no Canada perfect number larger that 10° exists.
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9. Solving Equations Involving Arithmetical
Functions

(701) Using a computer,

(a) find all values of n < 10000 for which 47(n + 2) = ¢(n).
(b) write a program that gives the positive integers 1 < n
which o(n) = 2n — 1.

(702) Without using a computer, find at least six solutions of ¢(c(n)) = n.

(703) Show how one can obtain from each solution of ¢(o(n)) = n a correspond-
ing solution of the equation o(¢(n)) = n, and then use this argument to
find six solutions of o(¢(n)) = n with the help of Problem 702.

(704) Show that if p and (37 — 1)/2 are two prime numbers, then n = 3P~!
is a solution of o(¢(n)) = ¢(o(n)). Use a computer to obtain explicitly
three of these solutions. Are there any other solutions besides those of
this particular type?

(705) Show that the equation ¢(7(n)) = 7(¢(n)) has infinitely many solutions.

(706) Find all the solutions of 7(y(n)) = ¥(7(n)), where v(n) := [, -

(707) Consider the arithmetical function ¢ defined by §(1) = 1 and, for n > 2,
by d(n) = Hp”np. In particular, if n is squarefree, we have §(n) = n. Use
a computer to obtain the three smallest nonsquarefree solutions n of

< 2000, for

(%) §(n+1)—4d(n) =1,
and then prove that the equation () has infinitely many nonsquarefree
solutions.

(708) Equation y(o(n)) = n has only two solutions. What are they?

(709) Let k be a positive integer which is not a multiple of 8. Show that the
only possible values of the smallest positive integer n which divides oy (n)
are 6, 10 and 34.

2
(710) Show that all the solutions of the equation @ =g are of the form
n=3%k=12,....
(711) Prove that a positive integer n is a solution of the equation
4
M: Ze=n=3"Pwitha=1,2,..., 8=1,2,....
n 7
(712) Let S(n) = Z 7(d). Determine all values of n such that n = S(n).
d|n

(713) Find all positive integers n such that
(a) o(n) = 24; (b) o(n) = 57.

(714) What is the smallest positive integer n such that o(z) = n has exactly
one solution?

(715) What is the smallest positive integer n such that o(z) = n has exactly
two solutions?

(716) What is the smallest positive integer n such that o(z) = n has exactly
three solutions?

(717) Let n be a fixed positive integer. Is the number of solutions of the equation
o(z) = n finite or infinite? What about the equation 7(z) = n?

(718) Is it true that n is prime if and only if o(n) =n + 17
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(719) Let a be a rational number > 32 and let n be an odd solution of the
equation o(n) = an. Show that n has at least four distinct prime factors.

(720) Let a be a rational number > 23 and let n be an arbitrary solution of the
equation o(n) = an. Show that n has at least four distinct prime factors.

(721) Find two integers n for which

on) 9
n 4

(722) Show that there exist infinitely many positive integers m such that equa-
tion o(n) = m has at least three solutions.

(723) Let o(n) be the total number of subgroups of the dihedral group D,, of
the symmetries of the regular polygon with n sides. It is possible to show
that d(n) = 7(n) + o(n) (see S.Cavior [5]). A number n is said to be
dihedral perfect if G(n) = 2n. Characterize all such numbers which are
also of the form n = 2¥p, where p is prime and k is a positive integer. Use
a computer to find the five smallest dihedral perfect numbers of this form.

(724) Find all the solutions z of the equation ¢(z) = 24.

(725) Show that if ¢(z) = 2"N, where (2, N) = 1, then z has at most r distinct
odd prime factors.

(726) Find all positive integers n such that 4 f$(n).

(727) Show that if m = 2 - 3%+ with k > 1, then

d(n) =m <= n = 35F2 or n = 2. 3642,

Use this to show that there exist infinitely many positive integers m such
that #{n : ¢(n) =m} = 2.

(728) Show that there does not exist any positive integer n such that ¢(n) =
27", where m > 1.

(729) Let n > 2. Show that ¢(n) =n — 1 if and only if n is prime.

(730) Let p be a prime number such that 2p+ 1 is composite. Show that ¢(z) =
2p has no solutions.

(731) Show that ¢(n) = n/2 if and only if n = 2*, for a certain integer k > 1.

(732) Show that ¢(n) = 2n/5 if and only if n = 2"5%, r,;s € N.

(733) Show that there exist infinitely many positive integers n such that ¢(n) =
n/3.

(734) Are there any positive integers n such that ¢(n) = n/4?

(735) Let n,a € N and let p be a prime number. Show that ¢(p®) = 2(6n + 1)
if and only if p > 6, p = 11 (mod 12) and a is even.

(736) Let n € N.

(a) Show that /n < ¢(n) < n.
(b) Show that the equation ¢(x) = n has only a finite number of integer
solutions z.

(737) Find the smallest positive integer n such that ¢(z) = n has no solutions.
Find the smallest positive integer n such that ¢(z) = n has exactly one
solution, and finally find the smallest positive integer n such that ¢(z) = n
has exactly two solutions.

(738) Show that if a certain arithmetical function f satisfies

;(17) S f(d) = f(n)
d|n
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for each positive integer n, then necessarily there exists a constant ¢ such
that f(n) = c for each n € N.
(739) Show that if a certain multiplicative function f satisfies

% 3" £(d) = f(n)
d|n

for each positive integer n, then necessarily f(n) =1 for each n > 1.
(740) Show that the equation (x) Q(n)®(™ = n has infinitely many solutions.
(741) Consider the equation () 3, 7(d) = n, where 7(1) =1 and, for n > 2,
¥(n) = [1,),, p- Show that the only solution n > 1 of (x) is n = 56.
(742) Show that the equation o(n) — ¢(n) = (—1)"7(n) has only one solution.
(743) Find all pairs of positive integers m and n such that

$(mn) = ¢(m) + ¢(n).
(744) Show that the only solutions of ¢p(n) = v(n) are n = 1,4,18.
(745) Show that the only solutions of #(n) = v(n)? are n = 1, 8, 108, 250, 6174
and 41154.
(746) Consider the equation () o(n) = v(n)2. Show that each solution n > 1
of () must satisfy the following properties:
(a) n is an even number.
(b) n cannot be squarefree.
Then, use a computer to find the only solution n > 1 of (%) which is
smaller than 108.
(747) Let k be an arbitrary positive integer. Prove that there exists infinitely
many positive integers n such that y(n)* divides o (n).
(748) Show that the equation ¢(n) + v(n) = o(n) has only one solution.

(749) ihow that %

(750) Find all positive integers n such that 2¢(®) < 2n.

is an integer for infinitely many positive integers
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(759)
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10. Special Numbers

Squaring 12 gives 144. By reversing the digits of 144, we notice that 441
is also a perfect square. Using computer software, write a program to find
all those integers n, 1 < n < N, verifying this property.

A positive integer which is divisible by the sum of its digits is called a
Niven number. For example, 81 is a Niven number since it divisible by
841 = 9; but 71 is not a Niven number since it is not divisible by 7+1 = 8.
Using computer software, write a program which finds all Niven numbers
n € [12476, 12645).

A positive integer is said to be a palindrome if by reversing the order of its
digits, we obtain the same number, such as is the case with the number
12321. Use a computer to show that 26 is the smallest positive integer
which is not a palindrome, but such that its square is a palindrome. Find
other integers having this property.

A positive integer N is called a Cullen number if it is of the form n-2"+1,
n > 1. Find the Cullen prime numbers smaller than 1000.

Write a program which allows one to find the positive integers < N which
can be written as the sum of two squares. Use this program to determine
all the positive integers < 300 with this property.

Carmichael’s conjecture states that for each positive integer n, there exists
an integer m # n such that ¢(m) = ¢(n), where ¢ stands for Euler’s
function (see Schlafly and Wagon [36]). Write a program which verifies
this conjecture for a given integer n.

A positive integer N is called a Silverbach number if it can be written as
the sum of two prime numbers in three different ways. Using computer
software, write a program which allows one to write any integer n as the
sum of two prime numbers in one way, in two distinct ways, in three
distinct ways, and so on.

A prime number p is called a Wilson prime if (p — 1)! = —1 (mod p?).
Using a computer, find the three smallest Wilson primes.

Let £ > 1 be an integer. A positive integer n is said to be k—hyperperfect
if

n=14+k Z d.

d|n
l<d<n

A 1-hyperperfect number is simply a perfect number.
(a) Show that a positive integer n is k-hyperperfect if and only if ko (n) =
(k+n+k—1.
(b) Show that a positive integer n is k-hyperperfect if and only if o(n) =
n+1+ 2L,
(c) Show that if n is k-hyperperfect, then n =1 (mod k).
(d) Show that if n is k-hyperperfect, then the smallest prime factor of n
is larger than k.
(e) Prove that no prime power can be a k-hyperperfect number, for any
integer k > 1.
(f) Use a computer to find all 2-hyperperfect numbers smaller than 108.
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(g) Construct an algorithm which allows one to identify all 2-hyperperfect
numbers < 10° of the form 3% - p, where « is a positive integer and
where p > 3 is a prime number.

(760) Show that if we add the digits of an even perfect number larger than 6
and we then add the digits of the number thus obtained, and so on until
we obtain a one-digit number, then this digit must be 1.
(761) Show that if {¢x} stands for the increasing sequence of triangular numbers,
then, for each positive integer n,
- n(n+1)(n +2)
R
k=1

6
2n)!
(762) Show that the Catalan number ;L'(nn—-!—)l)' is an integer for each integer
n > 0.

(763) Show that the following method, invented by Thabit ben Korrah (826—
901), an Arabic mathematician of the ninth century, for finding amicable
numbers does work: if p=3-2¥"1-1,¢=3-28—~1landr=9-22k"1_-1
are primes for a certain positive integer k, then the numbers

M =2Fpg and N =2Fr

form an amicable pair.

(764) Show that the quotient of two triangular numbers can never be 4.

(765) A positive integer n is said to be abundant if o(n) > 2n. Use a computer
to find the smallest odd abundant number, and then prove that there exist
infinitely many abundant numbers.

a(n) _ o(d)

(766) Let n be a positive integer. Show that —= > 4 for each divisor d of

n. Use this result to show that a positive%nteger n which is a multiple of
6 is a nondeficient number, that is such that o(n) > 2n.

(767) Show that there exist infinitely many positive integers m such that
n|(2™ + 1).

(768) Show that if n is an integer larger than 1 such that n|(2" + 1), then n is
a multiple of 3.

(769) Prove that a Fermat number F,, = 22" + 1 cannot be equal to p*, where
p is prime and k is an integer > 2.

(770) Does there exist a prime number p which is a factor of two Mersenne
numbers (that is numbers of the form 27 — 1, where q is a prime number)?

(771) Use a computer to find the two smallest nondeficient consecutive numbers;
that is find the smallest number n such that o(n —1)/(n — 1) > 2 and
o(n)/n > 2. Proceed in the same manner to find the three smallest
nondeficient consecutive numbers. Finally, show that given an arbitrary
integer k > 2, there exist & nondeficient consecutive numbers.

(772) Show that there exists a positive integer n such that o(n) > 3n and
on+1)>3(n+1).

(773) Show that each odd tri-perfect number must have at least eight distinct
prime factors.

(774) Show that if a and b are two positive integers such that ab+ 1 is a perfect
square, then the set

A={a,b,a+b+2Vab+1,4(a+ Vab+1)(b+ Vab+ 1)Vab+ 1}
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is such that if z,y € A, x # y, then zy + 1 is also a perfect square. Then,
find two sets A with this property.

Show that for each positive integer n equal to twice a triangular number,
the corresponding expression

\/n+\/n+\/n+m

represents an integer.
Prove Cassiny’s identity

Fo1Fpy1 —F2=(-1D)" (n=2,3,...),
where F;, stands for the n-th Fibonacci number.
Show that the set A = {FQn,F2n+2,F2n+4,4F2n+1F2n+2F2n+3}, where
F,,, stands for the m-th Fibonacci number, is such that if x,y € A, x # vy,

then zy + 1 is a perfect square.
Show that, for each integer n > 1, the number

n(n+1)(n+2)(n+3)
8

is a triangular number.

Show that there exist infinitely many prime numbers whose last four digits
are 7777. Find five such primes.

Use a computer to find the three smallest integers n > 1 which have the
property of being divisible by the sum of the squares of their digits as well
as by the product of the squares of their digits. Deduct the existence of a
fourth one.

We know that ¢(p) = p — 1 if p is prime. In 1932, Derrick Henry Lehmer
(1905-1991) conjectured that there does not exist any composite number
n such that ¢(n) is a proper divisor of n — 1. Show that if such a number
exists, it must be a Carmichael number.

Let us write the integer n > 9 in the form n = dids - - - d,, where dy, do, . . .,
d, are the r digits of n. Show that there exist only a finite number of
integers n such that

n=dl+ds+dj+ - +d

and use a computer to find the eight smallest such numbers n > 9.
Let us write the integer n > 9 in the form n = dyds - - - d,, where dy, do, . . .,
d, are the r digits of n. Show that there exists no number n such that

n=d+dy " +dy + e+ dl
Show that there exist infinitely many numbers n such that o(n) = 2n — 1.

Given a positive integer n = 2 (mod 3), show that each odd prime divisor
of n? +n + 1 is congruent to 1 modulo 3.
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11. Diophantine Equations

(786) For which positive integer(s)  is it true that
(*) P+ (@+1)°+(z+2°=(2+3)°7?
(787) Show that the Diophantine equation
34+ 5=117y°

has no solutions.

(788) Onme day, as the English mathematician Godfrey Harold Hardy (1877-
1947) was visiting Srinivasa Ramanujan (1885-1920) at the hospital, the
patient commented to his visitor that the number on the license plate of
the taxi that had brought him, namely 1729, was a very special number:
it is the smallest positive integer which can be written as the sum of two
cubes in two different ways, namely

1729 = 13 4+ 123 = 93 4+ 103,
Using the identity

(*) (3a2 + 5ab — 5b%)% + (4a% — 4ab + 6b?)% = (—5a? + 5ab + 3b%)3
+(6a® — 4ab + 4b?)3

due to Ramanujan, show that there exist infinitely many positive integers
which can be written as a sum of two cubes in two different ways. Does
this identity allow one to find the “double” representation of 17297

(789) Let a,b,c € Z. Show that azx + by = b + c is solvable in integers « and y
if and only if ax + by = c is also solvable.

(790) Let a,b,c € Z. Show that ax + by = c is solvable in integers z and y if
and only if (a,b) = (a,b,c).

(791) Let a and b be positive integers such that (a,b) = 1. Show that az+by = n
has positive integer solutions if n > ab, while it has no positive integer
solution if n = ab.

(792) Find the positive integer solution(s) of the system of equations

z+y+2=100,
z
2w+5y+ﬁ—100.

(793) The triangle whose sides have lengths 5, 12 and 13 respectively has the
property that its perimeter is equal to its area. There exist exactly five
such triangles with integer sides. Which are they?

(794) Identify all the integer solutions, if any, to the equation

22 +3y=>5.

(795) Show that if the positive integers z,y, z are the respective lengths of the
sides of a rectangular triangle, then at least one of these three numbers is
a multiple of 5.
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(796) Let a,b and c be three real nonnegative numbers. Show that the system
of equations

ar+by+cry = a+b+e,
by+cz+ayz = a+b+c
cz+ax+bzxr = a+b+c

has one and only one solution in nonnegative integers z, y, 2. What is
this solution? Why is it so?

(797) Let a and b be positive integers such that (a,b) = 1. Show that ax + by =
ab — a — b has no solutions in integers £ > 0 and y > 0.

(798) Let a and b be positive integers such that (a,b) = 1. Show that the
number of nonnegative solutions of ax + by = n is equal to

Gl o lal

(799) At the fruit counter in a store, apples are sold 5 cents each and oranges
are sold 7 cents each. Say Peter purchases four apples and twelve oranges.
Peter notices that Paul also bought apples and oranges and that he pays
the same total amount as you did, but with a different number of apples
and oranges. Knowing that Paul purchased at least three oranges, does
Peter have enough information to determine the exact number of apples
and oranges purchased by Paul?

(800) Determine the set of solutions of the Diophantine equation 3z + 7Ty = 11
located in the third quadrant of the cartesian plane.

(801) Determine the set of solutions of the Diophantine equation 5z + 7y = 11
located above the line y = x.

(802) Assume that the set E of solutions of the Diophantine equation

(%) ar +by =11
is given by
E={(z,y):x=5—4t and y =1 — 3t, where ¢t € Z}.

Determine the values of a and b.
(803) Find the primitive solutions of x2 + 3y? = 22, that is those solutions z, ¥,
z which have no common factor other than 1.
(804) Show that the only nonzero integer solutions (z,y,z) to the system of
equations
c+ytz=23+y3+22=3
are (1,1,1), (=5,4,4), (4,—5,4) and (4,4, —5).
(805) Show that the equation
=y +2°
has infinitely many solutions in positive integers , y z.
(806) Find the four different ways of writing 136 as a sum of two positive inte-
gers, one of which is divisible by 5 and the other by 7.
(807) Any solution in positive integers x, vy, z of 2 + y? = 22 is called a Pytha-
gorean triple, since in such a case there exists a rectangular triangle whose

sides have z, y, z for their respective lengths. Find all Pythagorean triples
whose terms form an arithmetic progression.
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Find the dimensions of the Pythagorean triangle whose hypotenuse is of
length 281.

Show that 60 divides the product of the lengths of the sides of a Pythagorean
triangle.

Find every Pythagorean triangle whose area is equal to three times its
perimeter.

Find every Pythagorean triangle whose perimeter is equal to twice its
area.

Show that {z,y, 2z} = {3,4,5} is the only solution of 2% + y? = 22 with
consecutive integers x, y, 2.

Show that n? + (n + 1)? = 2m? is impossible for n,m € N.

Show that the equation z? + y? = 4z + 7 has no integer solution.

Find all integer solutions of 22 + y? = z* such that (x,y,2) = 1.

Find all integer points on the line z + y = 1 which are located inside the
circle centered at the origin and of radius 3.

Find all primitive solutions of the Diophantine equation

z* + 3136 = 22
Find all integer solutions of the equation
z? +y? = ay.
Find the solutions of the Diophantine equation
(%) z? 4 2y? = 422

Find a triangle such that each of its sides is of integer length and for which
an interior angle is equal to twice another interior angle.
Find all positive integer solutions to the equation 22 + y? = 10. Do the
same for z? + y? = 47.
Find all positive rational solutions of 2% + y2 = 1.
Find all primitive Pythagorean triangles such that the length of one of
their sides is equal to 24.
Show that the radius of any circle inscribed in a Pythagorean triangle is
an integer.
Show that the equation z? + y? + 2% = 2239 has no solutions in positive
integers z, y, 2.
Show that

2=z +y* +2?
has no nontrivial integer solution with ¢ even and with z, y, z having no
common factor.
Find all primitive solutions of the Diophantine equation z? + 2y% = 22.
Find all positive integer solutions to the system of equations

a® — b3 — ¢ = 3abc,
a?=2(b+c).

Find all integer solutions of y? +y = z* + 23 + 22 + z.

Find the smallest prime number which can be written in each of the
following forms: x? + 42, z% +2y2%,..., 22 + 10y°.

Determine the set of quadruples (z, y, z, w) verifying 3 +y>+ 23 = w® and
such that z,y, z and w are positive integers in arithmetical progression.
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(832) Consider the sequence 8,26, 56,98, 152, ..., that is the sequence {z,} de-
fined by z; = 8 and 2,41 = 2, + 6(2n + 1), n > 1, and show that for
n > 1, &, cannot be the cube of an integer.

(833) Show that z" + 1 = y™*! has no solutions in positive integers z,y,n
(n > 2) with (z,n+1)=1.

(834) Show that neither of the equations

3*+1=5"+4+7 and 5°+1=38"+7°

has a solution in integers a, b, ¢ other than a =b=c=0.

835) Find all integer triples (z,y, 2) such that 4% + 4¥ 4 4% is a perfect square.

(
(836) Show that there exist solutions in positive integers a, b, ¢, z, y to the system
of equations

ad + 03+ =28+ 453
Show, in particular, that there exist infinitely many solutions such that
a, b, ¢ are in arithmetic progression.
(837) Solve each of the following Diophantine equations: (here m is a nonnega-
tive integer)

{ atb+c=xz+y,

wm(zZ + y) _ ym-l—l’
xm(xQ + y2) — ym+1'
(838) Can the following equations be verified for an appropriate choice of inte-
gers x,a,b,c,d?
(z+1)%24+a?=(2+22%+b*=(@+3)+c% =(z+4)?+d°
(839) Does the equation
2yt =ayz—1
have integer solutions?
(840) Find all pairs of real numbers (z,y) which satisfy the two equations:
(%) 223 —2? +y? =1,
(+%) 23 — 2 + 2% =1.
(841) Find all positive integer solutions z,y of z¥ = y* V.
(842) Find all integers solutions z, y, z to the system of equations
20(1+y+y°) =3(1+y"),
2y(1+ 2 +2%) = 3(1 +2%),
22(1+x+2%) =3(1 +2%).
(843) Prove that there exist infinitely many integers a, b, ¢, d such that a > b >
¢>d>1andald =blc.
(844) Show that the equation z3 + y3 + 2% = 4 has no solutions in integers.
What about the equation z3 + 3 + 23 = 5?
(845) Does the Diophantine equation z* = 4y? + 4y — 80 have any solutions? If
so, what are they? If no, explain why.
(846) Does the Diophantine equation z# + y* + 2* = 363932239 have any solu-

tions? If so, what are they? If no, explain why.
(847) Let a be an arbitrary integer. Does the Diophantine equation

303z + 57y =a’+1

have any solution?
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Does the Diophantine equation
at =4y + 4y — 15
have any solution?
Do integers z,y, z exist such that
ot + 2y + 1)t =227
Determine the set of positive solutions of the Diophantine equation
2 =y* + 8.
Let p be an odd prime number. Assume that ¢ = p + 8 is also a prime
number. Analyze the set of solutions of the Diophantine equation
2 =y' +pg
and give one such solution explicitly.
Does the Diophantine equation
e+ 420 +4y+42+2=0
have any solution?
Does the Diophantine equation
ot +y* + 2* +ut = 3zy2u
have any nonzero solution?
Does the Diophantine equation
x3 + 2 = 423
have any nonzero solution?
Find all integer solutions of 22 + y% = 82 + 7.
Show that z* + y* = 722 has no solutions in N. What about the equation
zt + y* = 5227
Does the equation z* + 22 = y* + 5 have any solution in integers z and y?
Let 0 < z < y < z be integers such that 22 + y? = 22. Show that for each
integer n > 2, z™ 4+ y™ = 2" is impossible.
Prove that the equation
2® + 3y° = 92°
has no nontrivial integer solution.
Let p be a prime number. Does the Diophantine equation
ot + pyt + p?2t = pPut
have any trivial solution?
Show that
2 +y% 4 22 = 22y2
has no nontrivial integer solution.
Determine all rational solutions of the equation
2 +y3 =%+ 42
Show that the Diophantine equation
1 1 1 1
— =+t —F——=1
T T2 Tn T1Z2: " Ty
has at least one solution for each integer n > 1.
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(864) Show that the Diophantine equation
2?4+ y? + 2% = 2%y?

has no nontrivial solution.
(865) Show that the equation

B4 28+t + 3+ 22+ 2+ 1 =1234567891314

has no integer solution.
(866) Prove that the Diophantine equation

(z+9)’+ (@ +2)°=(y+2)°

has no solutions in odd integers z, y, z.

(867) Let p be a fixed prime number. Find all positive integer solutions of
2% 4+ py? = 22

(868) Show that there exist infinitely many solutions to the Diophantine equa-
tion 22 + 432 = 23.

(869) Find all solutions, for z, y integers and n positive integers, to the Dio-
phantine equation z™ 4 y™ = zy.

(870) Show that the equation n* + n¥ = n* has positive integer solutions only
ifn=2.

(871) Show that the equation n® + n¥ + n* = n* has positive integer solutions
only if n =2 or 3.

(872) Show that the abc conjecture implies the following result: The equation
P + y? = 2" has no solutions in positive integers p,q,r, z,y, z with 2 > zg
and

(x) Tiielay,

b g T
so that in particular the Fermat equation z™ 4 y™ = 2" has no nontrivial
solution for n > 4 and z sufficiently large.

(873) Show that if the abc conjecture is true, then there can exist only a finite
number of triples of consecutive powerful numbers.

(874) Show that if the abc conjecture is true, then there exist only a finite
number of positive integers n such that n® + 1 is a powerful number.
Moreover, find two numbers n with this property.

(875) Erd6s conjectured that the equation x + y = z has only a finite number
of solutions in 4-powerful integers x, y, z pairwise coprime. Show that the
abc conjecture implies this conjecture.

(876) Show that if the abc conjecture is true, then there exist only a finite
number of 4-powerful numbers which can be written as the sum of two
3-powerful numbers pairwise coprime.

(877) Given an integer n > 2, let P(n) stand for the largest prime factor of n.
Prove that it follows from the abc conjecture that, for each real number
y > 0, the set A, := {p prime : P(p? — 1) < y} is a finite set and therefore
has a largest element p = p(y).

(878) In 1877, Edouard Lucas (1842-1891) observed that although 2701 is a
composite number, we have that 227°° = 1 (mod 2701), thus providing a
counter-example to the reverse of Fermat’s Little Theorem. More gener-
ally, show that one can construct a large family of such counter-examples
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by considering the numbers n = pq, where p and ¢ are prime numbers
such that p =1 (mod 4) and ¢ = 2p — 1.

(879) Show that if the abc conjecture is true, then for any € > 0, there exists a
positive constant M = M () such that for all triples (z1, z2, z3) of positive
integers, pairwise coprime and verifying x1 + x2 = =3, we have that

(%) min(z1, Zg, 23) < M (y(z;))3+¢ (1=1,2,3).
(880) In 1979, Enrico Bombieri naively claimed that: “the equation

0-0)-() e

had no solutions in positive integers x,y, z.” Was Bombieri right? If so,
prove it; if no, provide a counter-example.

(881) Let p be an odd prime number and let a1, @z, ..., a, be positive integers
not exceeding p — 1. Show that the Diophantine equation

nP =g + 252 4+l
has solutions in positive integers n, 1, zo,. .., T,.

(882) Even though, according to Fermat’s Last Theorem, for each prime number
p > 3, the equation zP+yP = 2P has no solutions in positive integers z, y, z,
show that the equation zP~! + yP~! = 2P always has solutions (besides
the trivial one x =y = z = 2).
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12. Quadratic Reciprocity

(883) Characterize all prime numbers p > 11 for which
z2=11 (mod p)

has a solution.
(884) Which of the following congruences have solutions?
(a) 2 =1 (mod 3);
(b) 2 = —1 (mod 3);
(c) 2 + 4z +8=0 (mod 3);
(d) z2+8z +16 = —1 (mod 17).
(885) Find the solutions of the congruence 2z? + 3z + 1 =0 (mod 7).
(886) Show that (1!)2 + (2!)2 + - -+ + (n!)? is never a perfect square, whatever
the integer n > 1.
(887) Let n € N. Show that the odd prime divisors of n? + 1 are of the form
12k 4+ 1 or of the form 12k + 5.
(888) Let p > 3 be a prime number. Show that p divides the sum

[
-

P

=1

Bl
N

(

(889) Assuming that m is a positive integer such that p = 4m+3 and ¢ = 2p+1
are two prime numbers, show that g|M, = 2P — 1. Use this result to show
that the Mersenne number M 122659 is composite.

(890) Show that 9239 divides 24619 — 1.

(891) Show that 5 is a nonquadratic residue of all the prime numbers of the
form 6™ + 1.

(892) Does there exist a perfect square of the form 1997k — 17

(893) Show that there exist infinitely many prime numbers of the form 3k + 1.

(894) Does there exist a perfect square of the form 1!+ 2!+ .- 4+ k! with & > 37

(895) Show that for each integer n > 1, (2" — 1) /(3" — 1).

(896)

896) Let p and g be two odd prime numbers, and a an integer. If p = q + 4a,

is it true that (2) = (E)?
q q

(897) If p is a prime number of the form 24k + 1, is it true that <§) =17
p
(898) Does the congruence z2 = 52 (mod 159) have any solutions?
(899) If p is a prime number of the form 8% +3 and if ¢ = 1%1 is a prime number,
can one conclude that ¢ is a quadratic residue modulo p?
(900) Show that 3 is a nonquadratic residue of all Mersenne primes larger than
3

(901) If p is a prime number of the form p = 8k + 7, show that
pl2"T — 1.

(902) Does the congruence z? = 2 (mod 231) have any solution? If so, what are
they? If not, explain why.

(903) Does there exist a positive integer n and a prime number p of the form
p = 100k + 3 such that p|n? + 1? Explain.
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(904) Is it true that there exist infinitely many positive integers n such that
23|n? + 14n + 47?7 Explain.

(905) Does there exist an integer z such that the prime number 541 divides
z? — 3z — 1?7 Explain.

(906) If p is a prime number, p = 1 (mod 24), does the congruence z? = 6
(mod p) have any solution? Explain.

(907) Let n be a positive integer such that p = 4™ + 1 is a prime number. Does
the congruence 22 = 3 (mod p) have any solution? Explain.

(908) Let A be the set of integers a, 1 < a < 43, for which there exists a prime
number p = a (mod 44) such that the corresponding congruence

z2=11 (mod p)
has solutions. Determine A.

(909) Find all prime numbers p for which <g> =-—1.
(910) Let p and g be odd prime numbers such that p = q + 4a, a € N. Show

()-()

(911) Of which prime numbers is the number —2 a quadratic residue?

(912) Let p be an odd prime number. Show that z2 = 2 (mod p) has solutions
if and only if p=1 or 7 (mod 8). Using this result, prove that 24"*3 =1
(mod 8n + 7) for each integer n > 0. In particular, find a proper divisor
of the Mersenne number 213! — 1.

(913) Observing that 2717 = 11 - 13 - 19, determine if the quadratic congruence
2?2 = 1237 (mod 2717) has solutions.

(914) Let a be an integer such that (a,p) = 1. Determine all prime numbers p
such that (E) = (p —a

p p
(915) Does the congruence z% = 131313 (mod 1987) have any solutions?

(916) Show that the equation 22 — y3 = 7 has no integer solution.
(917) Determine all prime numbers p for which 15 is a quadratic residue modulo

.
(918) Show that the statement of the law of quadratic reciprocity can be written

(as Gauss did) as
0)- ()

(919) Does the congruence z? = 34561 (mod 1234577) have any solution?
(920) Show that if r is a quadratic residue modulo m > 2, then

r®(M/2 =1 (mod m).

(921) Let a be an integer > 1 and let n be a positive integer. Show that
n|p(a™ — 1).
(922) Show that if p is an odd prime number, then

5(0)-o

j=1
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(923) Let p be an odd prime number. Show that

k=1

(924) Let p > 5 be a prime number. Using the Problem 923, show that one can
always find two consecutive integers which are quadratic residues modulo
p, as well as two consecutive integers which are quadratic nonresidues
modulo p.

(925) Find all prime numbers p such that the corresponding numbers 5p+ 1 are
perfect squares. Is it possible to find prime numbers p for which 5p + 2
are perfect squares?

(926) Let f: Z — Z be a polynomial function and let a, b be integers. Set

(%) =0 if plm. If (a,p) = 1, show that

-1 -1
§ (f(ak ¥ b)) 5 (f(k))
k=0 p k=0 p
Use this to prove that if (a,p) = 1, then

”i (ak + b)
(927) Let a,b € {—1,1}, p be an odd prime number and

N(a,b)z#{k|1§k§p——2, (%) —a, (—’“:—1) =b}.

Show that
N{a,b) = (p 2—b—ab—a(- )”_1)/2).

Use this to prove that the number of pairs of consecutive quadratic residues
modulo p is given by
— (=1)P-1)/2
1 .
(928) Let p be a prime number satisfying p =1 (mod 4). Show that

(»-1/2 , .
> (3)-e
=1 P
(929) Let p be a prime number such that p =1 (mod 4). Show that
p—1
k
>k (-) =0.
k=1 p
(930) Let p be a prime number such that p =1 (mod 4). Show that

N@a,1)="2
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(931) Let p be a prime number such that p =3 (mod 4). Show that
p—1 p—1
Se(t) ()
k=1 p k=1 p

(932) Show that the equation 22 — 33y? = 5 has no integer solutions.
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13. Continued Fractions

(933) Express each of the numbers v/2 and v/2/2 as a simple infinite continued
fraction.

(934) Using continued fractions, find a solution of the equation 12z + 5y = 13;
do the same for 13z — 19y = 1.

(935) Find the irrational number represented by the infinite continued fraction

3,1,4].
(936) Let a be an irrational number > 1 whose representation as a simple in-
finite continued fraction is [a1,as,...]. Express 1/« as a simple infinite

continued fraction.
(937) Find a rational number which provides a good approximation of v/5; that
is, find a rational number a/b such that
V5 —a/b| < 1074,
(938) Let {p,} and {g.} be the sequences defined in Definition 24. Show that
Pr o anea,. ) n>1, 2
Pn—1 dn-1
(939) Show that if ax? — bx — ¢ = 0 where abc # 0 and b? + 4ac is not a perfect

= [(ln,(ln_l,...,a2], n>2.

b
-, —} is a real root of the quadratic
a’ c

square, then the continued fraction [

equation.

(940) Find an approximation for the real roots of 222 — 5z — 4 = 0 which is
accurate up to the first decimal.

(941) For each n € N, show that vn? + 1 = [n, 2n].

(942) Given an integer n > 1, show that the continued fraction which represents
vn2 —1is [n—1,1,2n - 2].

(943) For each n € N, show that v/n2 + 2 = [n, n, 2n].

(944) Given an integer n > 1, show that the continued fraction that represents
vnZ—2is[n—1,1,n—2,1,2n - 2|.

(945) Find the continued fraction of /38, that of v/47 and that of v/120.

(946) If n is a positive integer, show that the continued fraction which represents
vn? +nis [n,2,2n)].

(947) Given an integer n > 1, show that the continued fraction which represents
Vvn2 —nis [n—1,2,2n—2].

(948) Given an integer n > 1, show that the continued fraction which represents
V9n? + 3 is [3n, 2n, 6n].

(949) Find the real number r whose expansion in a continued fraction is ¢ =
[1,1,2] by multiplying the quantities ¢ + 1 and q — 1.

(950) Find the best rational approximation a/b of ¥ when b < 1000. Do the
same for e and then for v/5.

(951) Find an approximation of the irrational number [1,2,3,4,5,6,7,...] cor-
rect up to the sixth decimal.

(952) Knowing that

e=2,1,2,1,1,4,1,1,6,1,1,8,1,...],

find a rational number which is a correct approximation of the number e
up to the fourth decimal.
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(953) Knowing that
m=1[3,7,15,1,202,1,1,1,2,1,3,1,14,2,...],

find a rational number which is a correct approximation of the number 7
up to the sixth decimal.
(954) Find an approximation correct up to 10~ of the number

[4,2,1,3,1,2,8].

(955) Let k > 1 and let Cx = pi/qr be the k-th convergent of the irrational
number . Assume that a and b are integers, with b positive. Show that
if |« — a/b| < |a — pr/qk|, then b > gr41/2.

(956) Assume that |v/3 — a/b| < |v/3 — 26/15|, where b > 0. Show that b > 21.

(957) Let k > 1 and let Cx = pg/qx be the k—th convergent of the irrational
number «. If a and b are integers with a > 1, b > 1 and

o<l B
bk
show that b > qr+1.

(958) Let a and b be positive integers such that v/3 < a/b < 26/15. Show that
b > 41.

(959) Let a/b be a rational number such that a/b # 333/106. If 0 < b < 56,
show that |7 — 333/106| < |7 — a/b|, and thus that 333/106 is a better
approximation of 7 then any other rational number whose denominator is
smaller or equal to 56.

(960) Let [aq1, a2, ...] be a simple continued fraction. Show that

gn >2D/2 forn > 3.
(961) Show that for n > 4,

PnQn-3 — qnPn-3 = (anan——l + ]-)(pn—4qn—3 - qn—4pn—3)
= (=1)™(@nan—1 + 1).

(962) Given an integer n > 2, let a1, aq,... and by, by, ... be integers such that
the a;’s and b;’s are positive for each 2 < j <n. If a; = b; for 1 <i < n
and a, < b,, show that

[(11,&2,...] < [bl,bz,...] if n is odd,
[a1,az,...] > [b1,bs,...] if n is even.

(963) Let a1,a2,..., bi,bs,... and c1, co,. .. be integers such that a;, b; and ¢;
are positive for each j > 2. If ¢; < a; < b; for 7 > 1, then show that

[bla C2, b3,C4,b5, .. ] S [a17a2aa3a .. ] S [clab2ac3a b4a Csy .. ]

(964) Let a; be integers taking the value 1 or 2. Show that if o = [ay,a2,...],
then
1
+2‘/§ <a<l1+v3.
(965) A complete orbit of the Earth around the Sun takes approximately 365
days, 5 hours, 48 minutes and 46 seconds. Thus, the actual length of a
year exceeds 365 days by ggzgg of a day. In 45 B.C., Julius Ceasar used

the correction 1/4, namely by adding the 29-th of February every four
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years. This approximation created an error of 10 days every 1500 years.
This necessitated a modification which was done by Pope Gregory XIII
in 1582. Our present calendar, known as the Gregorian calendar, gives an
additional day on each year divisible by 4, except on the years divisible by
100 but not by 400. This correction corresponds to adding 97 days (one
day per bissextile year) for a period of 400 years, which is a fairly good
approximation of 20926/86400. Find an even better approximation.

Let k > 1 and Cx = px/qx be the k—th convergent of the irrational number
« = |ay, az, as,...]. Show that

ag —1 O 0 0
1 a; -1 0 0
0 1 as 0 0
pr = det .
-1
. Ar—1 -1
0 0 0 1 ak

Find a similar expression for g.

A simple infinite continued fraction is said to be periodic if it is of the
form [a1,ag,...,0n,b1,b2,...,by]. If it is of the form [by,bs,...,bn], we
say that it is purely periodic. The smallest positive integer m satisfying the
above relation is called the period of the simple infinite continued fraction.
Show that any simple continued fraction which is purely periodic must be
a quadratic irrational number (that is an irrational number which is a root
of a quadratic equation whose coefficients are integers).

Show that every periodic simple continued fraction is a quadratic irrational
number.

Let o be an irrational root of f(z) := az? + bz + ¢ = 0, where a, b, c are
integers. If

o =lay,as,...], Op, = [@n+t1, Gnt2, .- .| for each n > 1,

show that o, (n > 1) is a root of the polynomial A,z% + B,z + C,, =0,
where

n

p
An=2q’f (q—") = ap? + bpngn + cg2,
B, = 2ap,pn-1 + bpngn_1 + bPn_1qn + 2¢cqngqn_1,

Pn—1
Cn=q_1f (q" ) =api_; +bpn-_1qn-1 +cq>_1,

n—1

and where B,, — 44,C,, = b?> — 4ac. Use this to prove that 4,C, < 0.
Let a be a quadratic irrational number and write

a=la1,02,...,0n, Q) (n=1,2,...),

where

O = [@n+t1, Gnt2, - - -] for each n > 1.
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Show that there exists a finite number of quadratic polynomials with
integer coefficients, say

Al.’L‘2 + Bl."L‘ + Cl7
Asz? + By + Cs,

AN.’L‘2 + BNIII + CN,

of which «, is a root.

Show that each quadratic irrational number has a periodic expansion as
a simple continued fraction.

Given any integer D > 1 which is not a perfect square, the following result
is known: Let & = a + bv/D and @ = a — bv/D, where « is a quadratic
trrational number. If a > 1 and —1 <@ < 0, then the continued fraction
which represents « is a simple continued fraction which is purely periodic.
Show that this is the case for the quadratic irrational numbers (3++/23)/7,
2 ++/7 and (5 + /37)/3.

If D is a positive integer which is not a perfect square, show that the
continued fraction which represents v/D is a periodic continued fraction
whose period begins after the first term. In particular, show that

VD = [a1,a2,a3,...,an, 2a1].
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14. Classification of Real Numbers

(974) Show that the sequence [v2], [2v/2], [3v/2], [4V/2],... contains infinitely
many powers of 2.

(975) Assume that 0 < r € Q is given as an approximation of v/2. Show that
the number % represents an even better approximation.

(976) Consider each of the following numbers and indicate if it is rational or

irrational:

(a) V676,  (b) VT5+v2.
(977) Let a = 12, b = 245, ¢ = 363, d = 375. Consider each of the following
numbers and indicate if it is rational or irrational:

(a) Vab;  (b) vac; () (6ad)'/3;  (d) loga.
(978) Let f:R — {0,1} be the Dirichlet function defined by

(z) = 1 if z is rational,
0 if z is irrational.

Show that this function has the representation

flx) = mlirg@(cos(m!wx))".

(979) Show that the positive root of the equation x° + x = 10 is irrational.

(980) Let r and s be two positive integers. If the equation 22 + rz 4+ s = 0 has
a root zg € Q, show that zq € Z.

(981) Let p and ¢ be two prime numbers. For which integers m and n is the
number m.,/p + n,/q an integer?

(982) Show that the number @ = 0.0110101000101. .., where the j-th decimal
after the dot is 1 if j is prime and 0 otherwise, is an irrational number.

(983) Let p and ¢ be two prime numbers. Show that ,/p 4 ,/q is necessarily an
irrational number.

(984) Consider the three numbers

1 / 1-+5
a=1+1+—17 ﬁ=\/1+ 1+V1+..., 6= 2\/_.

e

Find the only number ¢ satisfying the equation
a+pB+td=2.

(985) Is the number 2'/3 + 31/3 an irrational number?

(986) Is the number log;, 2 irrational?

(987) Let 0 < £ < 1 be a rational number. Prove that there exists only a finite
number of solutions p/q to the inequality

1
- = < .
q q?

(988) In 1934, Gelfond and Schneider established that if o and 3 are algebraic,

a # 0,1, and 3 is irrational, then o is transcendental. Use this result to

1
prove that 083
log

‘ p

is transcendental.
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(989) Let m € Q, m > 0. Prove that m + - is an integer if and only if m = 1.

(990) Find the polynomial of minimal degree of which the real number V24T
is a root.

(991) Determine the roots of the polynomial p(z) = z® + 222 — 1 and indicate
those which are rational numbers as well as those which are irrational
numbers.

(992) Let e stand for the Euler number. Is it possible to find integers a and b
such that

4 ?

Vae+b
If so, find them. If not, explain why.

(993) Is it true that the interval [Z, 2] contains at least one transcendental num-
ber? Explain.

(994) Using the fact that

e =

(57"

show that there exist irrational numbers a and 3 such that o is rational.
(995) Show that
(a) if y is a real nonnegative number such that e¥ is rational, then y is
irrational,;
(b)  is an irrational number.
(996) Show that log2 (the neperian logarithm of 2) is an irrational number.

1 1/3
(997) Show that -1

minimal polynomial.
(998) Show that 1+ v/2 4 /3 is an algebraic number of degree four by finding
its minimal polynomial.
(999) Is the number 2'/2 + 31/3 irrational, algebraic, transcendental? Explain.
(1000) Without using a computer, find all rational roots of the polynomial x5 +
39z* + 8323 + 32522 — 348z — 1924.
(1001) Does there exist a rational number z such that

oz + 2rtz? + 3m32® + dn?zt + S +6 =07

is an algebraic number of degree three by finding its

Explain.



